

# SE SE

# PVCHECKS ■ Manual de utilização





#### ÍNDICE

| 1  | PRFCA            | UÇÕES E MEDIDAS DE SEGURANÇA                                                | 3      |
|----|------------------|-----------------------------------------------------------------------------|--------|
| ٠. | 1.1. Inst        | ruções preliminares                                                         | ر<br>د |
|    |                  | ante a utilização                                                           |        |
|    | _                | os a utilização                                                             |        |
|    |                  |                                                                             |        |
| _  |                  | inição de categoria de medida (sobretensão)                                 |        |
| 2. |                  | IÇÃO GERAL                                                                  |        |
|    |                  | odução                                                                      |        |
|    | 2.2. Fun         | ncionalidades do instrumento                                                | 5      |
| 3. |                  | RAÇÃO PARA A SUA UTILIZAÇÃO                                                 |        |
|    | 3.1. Cor         | ntrolos iniciais                                                            | 6      |
|    | 3.2. Alin        | nentação do instrumento                                                     | 6      |
|    | 3.3. Arm         | nazenamento                                                                 | 6      |
| 4. | NOMEN            | ICLATURA                                                                    | 7      |
|    |                  | scrição do instrumento                                                      |        |
|    |                  | scrição do teclado                                                          |        |
|    |                  | scrição do display                                                          |        |
|    |                  | ã inicial                                                                   |        |
| _  | _                | GERAL                                                                       |        |
| ၁. |                  |                                                                             |        |
|    |                  | Γ – configuração do instrumento                                             |        |
|    | 5.1.1.           | Gerais                                                                      |        |
|    | 5.1.2.           | Unidade de medida                                                           |        |
|    | 5.1.3.<br>5.1.4. | Data e horaUnidade Remota/Piranómetro                                       |        |
|    | 5.1.4.<br>5.1.5. | Irradiação                                                                  |        |
|    | 5.1.6.           | Pinça CC                                                                    |        |
|    |                  | F – Configurações do teste de Eficiência das instalações FV                 |        |
|    | 5.2.1.           | Configuração do instrumento                                                 |        |
|    | 5.2.2.           | Parâmetros da instalação                                                    |        |
|    | 5.2.3.           | Selecção da relação de compensação dos efeitos da Temperatura               |        |
|    |                  | $N\Omega$ – Configurações do teste de continuidade com 200mA                |        |
|    | 5.3.1.           | Configuração do instrumento                                                 |        |
|    |                  | – Configurações da medição do Isolamento                                    |        |
|    | 5.4.1.           | Configurações da medição do isolamento                                      |        |
|    |                  | K – Configurações do teste rápido IVCK                                      |        |
|    | 5.5.1.           | Configuração do instrumento                                                 |        |
|    |                  | Gestão da base de dados dos painéis                                         |        |
|    | 5.6.1.           | Definição de um novo painel FV                                              | . ZU   |
|    | 5.6.2.           | Alteração de um painel FV existente                                         |        |
|    | 5.6.3.           | Eliminação de um painel FV existente                                        |        |
| 6. |                  | JÇÕES DE FUNCIONAMENTO                                                      |        |
| Ο. |                  | dição da Eficiência das instalações FV com o uso da unidade remota SOLAR-02 |        |
|    |                  |                                                                             |        |
|    | 0.2. IVIE        | dição dos parâmetros da instalação FV sem uso dO SOLAR-02                   | . 21   |
|    |                  | ste rápido em painéis e baterias de painéis FV (IVCK)                       | . 28   |
|    | 6.3.1.<br>6.3.2. | IntroduçãoExecução do teste rápido IVCK sem medição da Irradiação           |        |
|    | 6.3.2.<br>6.3.3. | Execução do teste rápido IVCK sem medição da Irradiação                     |        |
|    | 6.3.4.           | Repor Médias (Reset Medie)                                                  |        |
|    | 6.3.4.1          |                                                                             |        |
|    |                  | lição do Isolamento em painéis/baterias de painéis/campos FV (M $\Omega$ )  |        |
|    | 6.4.1.           | Introdução                                                                  |        |
|    | 6.4.2.           | Execução da medição do Isolamento – Modo CAMPO                              | 30     |
|    | 6.4.3.           | Execução da medição do Isolamento – Modo TIMER                              | . 41   |
|    | 6.4.4.           | Execução da medição do Isolamento – Modo BATERIA DE PAINÉIS (STRINGA)       | 43     |
|    | 6.4.4.1.         |                                                                             | 45     |
|    | 6.5. Med         | lição da Continuidade em painéis/baterias de painéis/campos FV (LOWΩ)       |        |
|    | 6.5.1.           | Introdução                                                                  |        |



| 6.5.2. Calibração dos cabos de medida                                                        | 46 |
|----------------------------------------------------------------------------------------------|----|
| 6.5.3. Execução da medição da Continuidade                                                   |    |
| 6.5.3.1. Situações anómalas                                                                  | 49 |
| 6.6. Lista das mensagens no display                                                          |    |
| 7. MEMORIZAÇÃO DOS RESULTADOS                                                                |    |
| 7.1. Guardar as medições de Eficiência                                                       |    |
| 7.2. Guardar as medições de IVCK, M $\Omega$ e LOW $\Omega$                                  | 51 |
| 7.3. Operações com resultados                                                                | 53 |
| 7.3.1. Voltar a apresentar no display os resultados da eficiência FV                         |    |
| 7.3.2. Voltar a apresentar no display os resultados da medição IVCK, $M\Omega$ e $LOW\Omega$ | 54 |
| 7.3.2.1. Acesso aos dados guardados em memória – Visualização numérica                       |    |
| 7.3.3. Eliminação dos dados em memória                                                       |    |
| 8. LIGAÇÃO DO INSTRUMENTO A PC                                                               |    |
| 9. MANUTENÇÃO                                                                                |    |
| 9.1. Generalidades                                                                           |    |
| 9.2. Substituição baterias                                                                   |    |
| 9.3. Limpeza do instrumento                                                                  |    |
| 9.4. FiM De vida                                                                             |    |
| 10. ESPECIFICAÇÕES TÉCNICAS                                                                  | 59 |
| 10.1. Características técnicas DA eficiência DAS instalações FV                              |    |
| 10.2. Características técnicas DA função IVCK                                                |    |
| 10.3. Características técnicas da segurança eléctrica                                        | 60 |
| 10.4. Normativas de referência                                                               |    |
| 10.4.1. Gerais                                                                               |    |
| 10.5. Características gerais                                                                 |    |
| 10.6. Condições ambientais de utilização                                                     |    |
| 10.7. Acessórios                                                                             | 61 |
| 11. APÊNDICE – NOÇÕES TEÓRICAS                                                               | 62 |
| 11.1. Teste de Eficiência das instalações FV                                                 | 62 |
| 12. ASSISTÊNCIA                                                                              |    |
| 12.1. Condições de garantia                                                                  |    |
| 12.2. Assistência                                                                            |    |
|                                                                                              |    |



#### 1. PRECAUÇÕES E MEDIDAS DE SEGURANÇA

Este instrumento foi construído em conformidade com a directiva IEC/EN61010-1 referente aos instrumentos de medida electrónicos. Antes e durante a execução das medições deve seguir os procedimentos descritos neste manual e ler com especial atenção todas as notas precedidas do símbolo ...

- Não efectuar medições de tensão ou corrente em ambientes húmidos.
- Não efectuar medições na presença de gases ou materiais explosivos, combustíveis ou em ambientes com pó.
- Evitar contactos com o circuito em exame durante as medições.
- Evitar contactos com partes metálicas expostas, com terminais de medida inutilizados, etc..
- Não efectuar qualquer medição no caso de se detectarem anomalias no instrumento tais como: deformações, roturas, ausência de visualização no display, etc..
- Prestar especial atenção quando se efectuam medições de tensões superiores a 25V em ambientes especiais e 50V em ambientes normais visto que há o risco de choques eléctricos.

Neste manual e no instrumento são utilizados os seguintes símbolos:



Atenção: ler com cuidado as instruções deste manual; um uso impróprio poderá causar danos no instrumento ou nos seus componentes



Perigo de alta tensão: risco de choques eléctricos



Duplo isolamento



Tensão ou corrente CC



Referência de terra

#### 1.1. INSTRUÇÕES PRELIMINARES

- Este instrumento foi concebido para ser utilizado nas condições ambientais especificadas no § 10.6. Não operar em condições ambientais diferentes.
- O instrumento pode ser utilizado para efectuar medições de TENSÃO e CORRENTE na CAT III 300V CC com tensão máxima 1000V CC entre as entradas. Não operar em circuitos que superem os limites especificados no § 10.1, § 10.2 e § 10.3

# $\bigwedge$

#### **ATENÇÃO**

Não utilize o instrumento para ensaios IVCK <u>em módulos fotovoltaicos com uma eficiência >19%</u>. Verifique previamente as características técnicas dos módulos fotovoltaicos antes de realizar os testes para evitar possíveis danos no instrumento.

- Seguir as normais regras de segurança orientadas para a protecção contra correntes perigosas e proteger o instrumento contra uma utilização errada.
- Só os acessórios fornecidos com o instrumento garantem as normas de segurança. Os mesmos devem estar em boas condições e substituídos, se necessário, por modelos idênticos.
- Verificar se as baterias estão inseridas correctamente.
- Antes de ligar os cabos de medida ao circuito em exame, verificar se está seleccionada a função pretendida.



#### 1.2. DURANTE A UTILIZAÇÃO

Ler atentamente as recomendações e as instruções seguintes:

#### **ATENÇÃO**



 O não cumprimento das advertências e/ou instruções pode danificar o instrumento e/ou os seus componentes ou ser fonte de perigo para o operador.

• O símbolo "indica o nível de carga completo das baterias internas. Quando o nível de carga cai para níveis mínimos o símbolo "i é apresentado no display. Neste caso interromper os testes e proceder à substituição das baterias de acordo com o descrito no § 9.2.

 O instrumento é capaz de manter os dados memorizados mesmo na ausência de baterias.

#### 1.3. APÓS A UTILIZAÇÃO

Após terminar as medições, desligar o instrumento mantendo premido o botão **ON/OFF** durante alguns segundos. Quando se prevê não utilizar o instrumento durante um longo período retirar as baterias e seguir o especificado no § 3.3.

#### 1.4. DEFINIÇÃO DE CATEGORIA DE MEDIDA (SOBRETENSÃO)

A norma IEC/EN61010-1: Prescrições de segurança para aparelhos eléctricos de medida, controlo e para utilização em laboratório, Parte 1: Prescrições gerais, define o que se entende por categoria de medida, vulgarmente chamada categoria de sobretensão. No § 6.7.4: Circuitos de medida, indica:

Os circuitos estão subdivididos nas seguintes categorias de medida:

- A Categoria de medida IV serve para as medições efectuadas sobre uma fonte de uma instalação de baixa tensão
  - Exemplo: contadores eléctricos e de medida sobre dispositivos primários de protecção das sobrecorrentes e sobre a unidade de regulação da ondulação.
- A Categoria de medida III serve para as medições efectuadas em instalações interiores de edifícios
  - Exemplo: medições sobre painéis de distribuição, disjuntores, cablagens, incluídos os cabos, os barramentos, as caixas de junção, os interruptores, as tomadas das instalações fixas e os aparelhos destinados ao uso industrial e outras aparelhagens, por exemplo os motores fixos com ligação à instalação fixa.
- A Categoria de medida II serve para as medições efectuadas em circuitos ligados directamente às instalações de baixa tensão
  - Exemplo: medições em aparelhagens para uso doméstico, utensílios portáteis e aparelhos similares.
- A Categoria de medida I serve para as medições efectuadas em circuitos não ligados directamente à REDE DE DISTRIBUIÇÃO
  - Exemplo: medições sobre não derivados da REDE e derivados da REDE mas com protecção especial (interna). Neste último caso, as solicitações de transitórios são variáveis, por este motivo (OMISSOS) torna-se necessário que o utente conheça a capacidade de resistência aos transitórios por parte da aparelhagem.



#### 2. DESCRIÇÃO GERAL

#### 2.1. INTRODUÇÃO

O instrumento foi concebido para realizar uma análise rápida de pré-teste (IVCK) em painéis/baterias de painéis fotovoltaicos (FV) a fim de verificar os parâmetros declarados pelo construtor para além de efectuar medições de isolamento/continuidade em painéis/baterias de painéis/campos FV e avaliação da Eficiência de um campo FV.

As medições IVCK e de isolamento/continuidade tanto podem ser efectuadas de modo sequencial pela ordem IVCK → Isolamento → Continuidade como manualmente de modo separado.

#### 2.2. FUNCIONALIDADES DO INSTRUMENTO

Estão disponíveis as seguintes características:

#### Teste de continuidade dos condutores de protecção (LOWΩ)

- Teste com corrente de teste > 200mA de acordo com as normativa IEC/EN62446
- Calibração manual dos cabos de medida

#### Medição da resistência de isolamento em painéis/baterias de painéis FV (M $\Omega$ )

- Tensões de teste 250V, 500V, 1000VCC de acordo com as IEC/EN62446
- 3 modalidades de medição: Campo, Temporizador (Timer), Bateria de painéis (Stringa)
- Verificação do isolamento de massas metálicas não ligadas à referência de terra

#### Avaliação da eficiência da instalação FV no curto/médio prazo (EFF)

- Medição da tensão CC, corrente CC e potência CC na saída dos painéis/baterias de painéis FV
- Medição da irradiação [W/m²] através da cela de referência ligada à unidade remota opcional SOLAR-02
- Medição da temperatura dos painéis e ambiente através da sonda ligada à unidade remota opcional SOLAR-02
- Aplicação das relacções de compensação da Eficiência CC
- Avaliação imediata da eficiência CC em função dos limites configurados pelo utente
- Gravação dos parâmetros de uma instalação FV com PI programável de 5s a 60min

#### Medições rápidas de pré-teste (IVCK) de acordo com a normativa IEC/EN62446

- Medição de tensão em vazio Voc em painéis/baterias de painéis FV até 1000VCC
- Medição de corrente de curto-circuito Isc em painéis/baterias de painéis FV até 15A
- Medição da irradiação com uso de cela de referência opcional
- Avaliação imediata (OK/NO) dos resultados obtidos
- Ligação eventual da unidade remota opcional SOLAR-02
- Base de dados interna personalizável para a gestão até 30 painéis FV
- Visualização dos resultados em condições OPC e STC

O modelo possui a função de retroiluminação do display, a possibilidade de regulação interna do contraste e um botão **HELP** capaz de fornecer no display uma ajuda ao operador na fase de ligação do instrumento á instalação. Uma função de desligar automático, eventualmente desactivável, está disponível após cerca de 5 minutos de não utilização do instrumento.



#### 3. PREPARAÇÃO PARA A SUA UTILIZAÇÃO

#### 3.1. CONTROLOS INICIAIS

O instrumento, antes de ser expedido, foi controlado do ponto de vista eléctrico e mecânico. Foram tomadas todas as precauções possíveis para que o instrumento seja entregue sem danos. Todavia, aconselha-se a efectuar uma verificação geral para se certificar de eventuais danos ocorridos durante o transporte. No caso de se detectarem anomalias contactar, imediatamente, o seu fornecedor..

Verificar, ainda, se a embalagem contém todas as partes indicadas no § 10.7. No caso de discrepâncias contactar o seu fornecedor. Contudo, se for necessário devolver o instrumento, por favor seguir as instruções indicadas no § 12.

#### 3.2. ALIMENTAÇÃO DO INSTRUMENTO

O instrumento é alimentado por bateria. Para o modelo e a autonomia das baterias consultar o § 10.5.

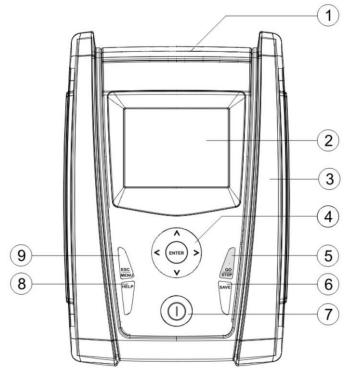
O símbolo "indica o nível de carga completo das baterias internas. Quando o nível de carga cai para níveis mínimos o símbolo 'e apresentado no display. Neste caso interromper os testes e proceder à substituição das baterias de acordo com o descrito no § 9.2.

### O instrumento é capaz de manter os dados memorizados mesmo na ausência de baterias.

O instrumento possui sofisticados algoritmos para aumentar, ao máximo, a autonomia das baterias.

Uma breve pressão do botão a cativa a retroiluminação do display. Para salvaguardar a eficiência das baterias a retroiluminação desliga-se automaticamente após cerca de 30 segundos.

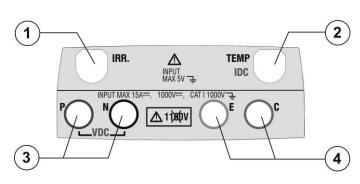
A utilização sistemática da retroiluminação diminui a autonomia das baterias


#### 3.3. ARMAZENAMENTO

Para garantir medições precisas, após um longo período de permanência em armazém em condições ambientais extremas, aguardar que o instrumento retorne às condições normais (consultar o § 10.6)



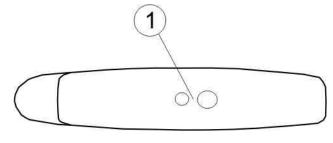
#### 4. NOMENCLATURA


#### 4.1. DESCRIÇÃO DO INSTRUMENTO



#### **LEGENDA**:

- 1. Entradas
- 2. Display
- 3. Conector para saída óptica/USB
- 4. Botões "setas"/ENTER
- 5. Botão GO/STOP
- 6. Botão SAVE
- 7. Botão ON/OFF
- 8. Botão HELP / 🌣
- 9. Botão ESC/MENU


Fig. 1: Descrição da parte frontal do instrumento



#### LEGENDA:

- Entrada para sonda de medição da irradiação
- Entrada para sonda da medição da temperatura auxiliar / pinça para corrente CC (IVCK, EFF)
- Entradas P, N para medição da tensão CC (IVCK, EFF) / Isolamento (MΩ)
- 4. Entradas E, C paro teste de continuidade (LOW $\Omega$ )

Fig. 2: Descrição da parte superior do instrumento



#### LEGENDA:

 Conector para ligação do cabo de saída optoisolado óptico/USB

Fig. 3: Descrição da parte lateral do instrumento



#### 4.2. DESCRIÇÃO DO TECLADO

O teclado é constituído pelos seguintes botões:



Botão **ON/OFF** para ligar e desligar o instrumento.



Botão **ESC/MENU** para sair do ecrã actual sem confirmar as alterações e para voltar ao menu principal.



Botões ◀ ▲ ▶ ▼ para mover o cursor no interior dos vários ecrãs com a finalidade de seleccionar os parâmetros de programação.

Botão **ENTER** para confirmar as alterações, os parâmetros de programação seleccionados e para seleccionar no menu a função à qual se pretende aceder.



Botão GO/STOP para iniciar a medição.



Botão **SAVE** para guardar a medição.



Botão **HELP** (pressão prolongada) para aceder à ajuda em linha visualizando as possíveis ligações entre instrumento e instalação

Botão 🌣 (simples pressão) para activar a retroiluminação do display

#### 4.3. DESCRIÇÃO DO DISPLAY

O display é um painel gráfico com resolução 128 x 128 15/05/12 15:34:26 pontos. Na primeira linha do display é visualizada a data/hora do sistema e o indicador do estado das baterias.

Por sua vez, na parte inferior é indicada a funcionalidade do botão **ENTER** e a modalidades activa.

O símbolo **1** indica a presença de uma ligação rádio activa com a unidade remota SOLAR-02.

O símbolo (material indica que está em curso a procura de uma ligação rádio com a unidade remota SOLAR-02.

# 15/05/12 15:34:26 Selecção

#### 4.4. ECRÃ INICIAL

Ao ligar o instrumento é visualizado durante alguns segundos o ecrã inicial. Nele são apresentados:

- O modelo do instrumento (PVCHECK)
- O construtor
- Presença do painel de comunicação rádio interno activado (RF)
- O número de série do instrumento (SN:)
- A versão do firmware presente na memória do instrumento (FW:)
- A data em que foi efectuada a última calibração do instrumento (Data de calibração:)

#### **PVCHECKs**

HT

RF SN: 15345678

FW: 1.10 Data calibração: 09/04/2025

Decorridos alguns instantes o instrumento passa para a última função seleccionada.



#### 5. MENU GERAL

A pressão do botão **ESC/MENU**, em qualquer condição em que se encontre o instrumento, provoca o aparecimento do ecrã do menu geral através do qual é possível configurar o instrumento, visualizar as medições memorizadas, e seleccionar a medição pretendida.

Seleccionando com o cursor uma das opções e confirmando com **ENTER** acede-se à função pretendida

| 12 15:34:26               |  |  |  |
|---------------------------|--|--|--|
|                           |  |  |  |
| Teste Módulos/Strings     |  |  |  |
| Teste de continuidade PE  |  |  |  |
| Teste isolamento          |  |  |  |
| Teste eficiência          |  |  |  |
| SET Configurações         |  |  |  |
| <b>DB</b> Arquivo painéis |  |  |  |
| <b>MEM</b> Dados memória  |  |  |  |
| PC Transf. dados PC       |  |  |  |
| ENTER para seleccionar    |  |  |  |
| MENU                      |  |  |  |
|                           |  |  |  |

#### 5.1. SET - CONFIGURAÇÃO DO INSTRUMENTO

Colocar o cursor no item **SET** utilizando os botões "setas"  $(\blacktriangle, \blacktriangledown)$  e confirmar com **ENTER**. No display aparece o ecrã que lista as várias configurações do instrumento.

As configurações são mantidas mesmo depois de desligar o instrumento



#### 5.1.1. **Gerais**

- 1. Colocar o cursor no item **Gerais** utilizando os botões 15/05/12 15:34:26 "setas" (▲,▼) e confirmar com **ENTER**.
- 2. No display aparece o ecrã que permite:
  - > A configuração do idioma do instrumento
  - > A activação/desactivação do desligar automático
  - > A regulação do contraste do display
  - A activação da sinalização acústica em correspondência com a pressão de um botão.
- Para as configurações das opções usar os botões "setas" (▲,▼) e escolher a opção pretendida usando os botões "setas" (◀, ▶).
- 4. Premir o botão **SAVE** para guardar as configurações efectuadas e a mensagem "Dados memorizados" será apresentada durante uns instantes. Premir o botão **ESC/MENU** para sair sem guardar e voltar ao ecrã anterior.





#### 5.1.2. Unidade de medida

Esta secção permite a configuração das unidades de medida de alguns parâmetros presentes na gestão da base de dados (DB) dos painéis FV (consultar o § 5.6) na medição de IVCK

- Colocar o cursor no item "Unidade de medida" utilizando os botões "setas" (▲, ▼) e confirmar com ENTER
- 2. No display aparece o ecrã que permite a configuração das unidades de medida dos seguintes parâmetros:
  - Alpha → selecções possíveis: "%/°C" e "mA/°C"
  - Beta → selecções possíveis: "%/°C" e "mV/°C"
  - Gama → expresso em "%/°C"
  - Tolerância Voc e Isc → expresso em "%"
- Para a configuração das unidades de medida usar os botões "setas" (◀, ►)
- Premir o botão SAVE para guardar as configurações efectuadas e a mensagem "Dados memorizados" será apresentada durante uns instantes.
- 5. Premir o botão **ESC/MENU** para sair sem guardar e voltar ao ecrã anterior

# Alpha : ( mA/°C ) Beta : %/°C Gama : %/°C Tolerância : % SAVE para guardar SET

#### 5.1.3. Data e hora

- Colocar o cursor no item "Data Ora" utilizando os botões setas" (▲,▼) e confirmar com ENTER
- No display aparece o ecrã que permite a configuração da data/hora de sistema seja no formato Europeu (EU) seja no formato USA (US)
- Para a configuração das unidades de medida usar os botões "setas" (◀, ►)
- 4. Premir o botão SAVE para guardar as configurações efectuadas e a mensagem "Dados memorizados" será apresentada durante uns instantes. Premir o botão ESC/MENU para sair sem guardar e voltar ao ecrã anterior

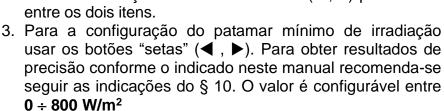


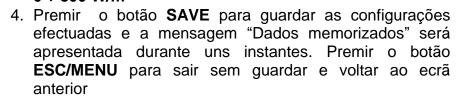


#### 5.1.4. Unidade Remota/Piranómetro

Esta secção permite seleccionar o tipo de unidade remota a utilizar (se disponível) e configurar os valores dos parâmetros característicos (Sensibilidade e Alpha) da cela solar de referência (acessório opcional HT304k). Os valores destes parâmetros estão indicados na etiqueta posterior da referida cela em função do tipo de painel em teste.

- Colocar o cursor no item Unidade Remota utilizando os botões "setas" (▲,▼) e confirmar com ENTER
- No display aparece o ecrã que permite seleccionar o uso da unidade remota paro teste EFF ou IVCK. As opções possíveis são:
  - ➤ SIM (uso do SOLAR-02).
  - NÃO (não utilização do SOLAR-02). No caso de não utilização da unidade remota SOLAR-02 paro teste IVCK deve-se configurar no instrumento os valores da Sensibilidade (Sens.) e do parâmetro Alpha da cela de referência fornecida.
- Para a configuração dos valores usar os botões "setas"
   (◀, ►)
- 4. Premir o botão **SAVE** para guardar as configurações efectuadas e a mensagem "Dados memorizados" será apresentada durante uns instantes. Premir o botão **ESC/MENU** para sair sem guardar e voltar ao ecrã anterior




#### 5.1.5. Irradiação

Esta secção permite a configuração do patamar mínimo de irradiação seja para a medição IVCK seja para o teste de eficiência de uma instalação FV.

- Colocar o cursor no item "Irradiação" utilizando os botões setas" (▲,▼) e confirmar com ENTER
- No display aparece o ecrã com os itens "Irr min IVCK", que permite a configuração do patamar mínimo de irradiação expresso em W/m², utilizado como referência pelo instrumento na execução da medição IVCK e "Irr min EFF" que permite a configuração do patamar mínimo de irradiação expresso em W/m², utilizado como referência pelo instrumento na execução das medições de eficiência de uma instalação FV. Usar os botões (▲,▼) para mudar entre os dois itens.









#### **ATENÇÃO**

A configuração "0 W/m²" para o parâmetro "Irr min IVCK" permite a execução da medição IVCK sem que sejam controladas as seguintes condições:

- Ligação da cela de referência à entrada IRR do instrumento
- > Valores instáveis de irradiação
- Número de painéis coerente com a tensão em vazio medida

#### 5.1.6. Pinça CC

Esta opção permite configurar **o eventual** factor de correcção K para a pinça CC a fim de melhorar a medição da corrente. Se presente, o factor de correcção é indicado na etiqueta posterior da referida pinça indicado como:

No caso de não existir nenhuma etiqueta configurar k = 1.000

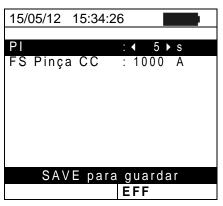
- Colocar o cursor no item Pinça CC utilizando os botões "setas" (▲,▼) e confirmar com ENTER
- No display aparece o ecrã "K pinça CC" que permite a configuração do factor de correcção num intervalo compreendido entre 0.950 e 1.050. Para a configuração dos valores usar os botões "setas" (◀, ►)
- 3. Premir o botão **SAVE** para guardar as configurações efectuadas e a mensagem "Dados memorizados" será apresentada durante uns instantes. Premir o botão **ESC/MENU** para sair sem guardar e voltar ao ecrã anterior





5.2. EFF – CONFIGURAÇÕES DO TESTE DE EFICIÊNCIA DAS INSTALAÇÕES FV A finalidade desta medição é a avaliação da Eficiência CC de uma instalação fotovoltaica com possibilidade de obter um resultado positivo ou negativo do teste/gravação em função de um limite no parâmetro nDC livremente configurado pelo utente. Para este teste é necessário o uso da unidade remota opcional SOLAR-02 (consultar o § 6.1).

#### 5.2.1. Configuração do instrumento


 Colocar o cursor no item EFF utilizando os botões "setas" (▲,▼) e confirmar com ENTER. No display aparece o ecrã que mostra os valores dos parâmetros eléctricos na saída do gerador fotovoltaico.

| 15/05/12                                     | 15:34:26                          |                                        |
|----------------------------------------------|-----------------------------------|----------------------------------------|
| Irr<br>Pnom<br>Tc<br>Te<br>Pdc<br>Vdc<br>Idc | 3.500<br><br>0.0<br>0.000<br>0.00 | W/m2<br>kW<br>°C<br>°C<br>kW<br>V<br>A |
| ndc<br>G(<br>Selecção                        | O para In                         | iciar<br>EFF                           |

- Premir o botão ENTER. O instrumento mostra as opções:
   Parâmetros da Instalação e Configurações do Instrumento
- 3. Usar os botões "setas" (▲,▼) para seleccionar o item "Configurações Instrumento" e confirmar com ENTER. O instrumento mostra o seguinte ecrã:

| 15/05/12   | 15:34:26   |      |
|------------|------------|------|
|            |            |      |
| Irr        |            | W/m2 |
| Pnom       | 3.500      | k W  |
| Тc         |            | ° C  |
| Тe         |            | ° C  |
| Pdc        | 0.0        | k W  |
| Vdc        | 0.000      | V    |
| ldc        | 0.0        | Α    |
| ndc        |            |      |
| Parâmetros | Instalação |      |
| Configura  | ções       |      |
| Instrumer  | ıto        |      |
| Selecção   |            | EFF  |
|            |            | •    |

- 4. Usando os botões "setas" (◀, ▶) e possível configurar:
  - ➢ O período de integração (PI) que pode ser utilizado pelo instrumento na operação de teste dos parâmetros de uma instalação FV. Podem ser selecionados os seguintes valores: 5s, 10s, 30s, 60s, 120s, 300s, 600s, 900s, 1800s, 3600s.
    - O FS da pinça CC utilizada para a medição da corrente CC com valor seleccionável entre 1A ÷ 3000A
- Premir o botão SAVE para guardar as configurações efectuadas e a mensagem "Dados memorizados" será apresentada durante uns instantes. Premir o botão ESC/MENU para sair sem guardar e voltar ao ecrã anterior.





#### 5.2.2. Parâmetros da instalação

 Colocar o cursor no item EFF utilizando os botões "setas" (▲,▼) e confirmar com ENTER. No display aparece o ecrã que mostra os valores dos parâmetros eléctricos na saída do gerador fotovoltaico.

| • | 15/05/12                                            | 15:34:26                           |                                        |
|---|-----------------------------------------------------|------------------------------------|----------------------------------------|
|   | Irr<br>Pnom<br>Tc<br>Te<br>Pdc<br>Vdc<br>Idc<br>ndc | 3.500<br><br>0.0<br>0.000<br>0.000 | W/m2<br>kW<br>°C<br>°C<br>kW<br>V<br>A |
|   | G (<br>Selecção                                     | O para In                          | iciar<br>EFF                           |

- Premir o botão ENTER. O instrumento mostra as opções:
   Parâmetros da Instalação e Configuração do instrumento
- Usar os botões "setas" (▲,▼) para seleccionar o item "Parâmetros Instalação" e confirmar com ENTER. O instrumento mostra o seguinte ecrã:

| 15/05/12  | 15:34:26     |      |
|-----------|--------------|------|
|           |              |      |
| Irr       |              | W/m2 |
| Pnom      | 3.500        | k W  |
| Тc        |              | ° C  |
| Тe        |              | ° C  |
| Pdc       | 0.0          | k W  |
| Vdc       | 0.000        | V    |
| ldc       | 0.0          | Α    |
| ndc       |              |      |
| Parâmetro | os Instalaçã | ão   |
| Configura | ções         |      |
| Instrumer | nto          |      |
| Selecção  |              | EFF  |
|           |              | •    |

- 4. Usando os botões "setas" (◀, ▶) é possível configurar:
  - ➤ Pmax → potência nominal máxima total da instalação FV expressa em kW
  - ➤ Gama → coeficiente de variação da potência com a temperatura, parâmetro característico dos painéis FV (escala: -1.00 ÷ -0.01%/C)
  - NOCT → temperatura nominal de funcionamento da cela, parâmetro característico dos painéis FV (escala: 0°C ÷ 100°C)
  - ➤ Te, Tc → configuração dos valores por defeito das temperaturas do ambiente (Te) e dos painéis FV (Tc). Estes valores só são considerados pelo instrumento na ausência da sonda auxiliar ligada à unidade SOLAR-02 (escalas: Te = 0°C ÷ 80°C; Tc = 0°C ÷ 100°C)
  - ➤ nDC Lim → limite mínimo de eficiência CC (valor por defeito: 0.85; escala: 0.01 ÷ 1.15)
  - ➤ **Tipo Corr.** → Configuração da relação de compensação sul cálculo da potência Pdc e da maximização da Eficiência CC (consultar o § 5.2.3)





#### 5.2.3. Selecção da relação de compensação dos efeitos da Temperatura

Esta opção permite seleccionar a relação a utilizar para efectuar as correcções às medições efectuadas em função da temperatura dos painéis de acordo com o cálculo da Eficiência nDC. Estão disponíveis as seguintes modalidades:

T.Mod.: Factor de correcção Rfv2 em função da Temp. painéis (Guia Italiana CEI-82-25)
 T.Env: Factor de correcção Rfv2 em função da Temp. ambiente (Guia Italiana CEI-82-25)

nDC: Correcção nDC através da Temperatura dos painéis



#### **ATENÇÃO**

 No âmbito da verificação de sistemas FV de acordo com o prescrito pelo guia Italiana CEI 82-25, é aconselhável adoptar a relação "T.Env."

| Tipo<br>Corr. | Temperatura utilizada (Tcel)                                               | Cálculo de nDC                                                                                                                                                                                                                                              |              |
|---------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| T.Mod.        | Tcel = Tmoduli_Mis                                                         | (se Tcel≤ 40°C)                                                                                                                                                                                                                                             |              |
| T.Env.        | $Tcel = \left(Tamb + \left(NOCT - 20\right) \times \frac{Irr}{800}\right)$ | $Rfv2 = \begin{cases} 1 & \text{(se Tcel} \le 40^{\circ}\text{C)} \\ 1 - (\text{Tcel} - 40) \times \frac{ \gamma }{100} & \text{(se Tcel} > 40^{\circ}\text{C)} \end{cases}$ $nDC = \frac{P_{dc}}{\left[Rfv2 \times \frac{G_p}{G_{STC}} \times P_n\right]}$ | CEI<br>82-25 |
| nDC           | Tcel = Tmoduli_Mis                                                         | $nDC = \frac{G_{STC}}{G_p} \times \left[1 + \frac{ \gamma }{100} \times \left(T_{cel} - 25\right)\right] \times \frac{P_{dc}}{P_n}$                                                                                                                         |              |

#### onde:

| Símbolo   | Descrição                                                                                                                                        | Unidade de<br>medida    |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| $G_{p}$   | Irradiação medida na superfície dos painéis                                                                                                      | $\left[ W/m^{2}\right]$ |
| $G_{STC}$ | Irradiação em condição Standard = 1000                                                                                                           | [W/m <sup>2</sup> ]     |
| $P_n$     | Potência nominal = soma dos Pmax dos painéis FV que fazem parte da secção da instalação em exame                                                 | [kW]                    |
| $P_{dc}$  | Potência CC medida na saída do gerador FV                                                                                                        | [kW]                    |
| Rfv2      | Coeficiente de correcção função da Temperatura das Celas FV (Tcel) medida ou calculada de acordo com o tipo de relação de correcção seleccionada |                         |
| 7         | Valor absoluto do coeficiente térmico da Pmax dos painéis FV que fazem parte da secção da instalação em exame.                                   | [%/°C]                  |
| NOCT      | (Normal Operating Cell Temperaturas) = Temperatura a que se levam as celas em condições de referência (800W/m², 20°C, AM=1.5, vel. Ar =1m/s).    | [%/°C]                  |

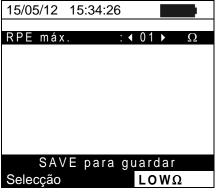
Para mais detalhes consultar o § 11.1.



#### 5.3. LOW $\Omega$ – CONFIGURAÇÕES DO TESTE DE CONTINUIDADE COM 200MA

A finalidade desta medição é a execução do teste de continuidade dos condutores de protecção e equipotenciais (ex: da ponteira de terra e massas estranhas ligadas) e dos condutores de ligação à terra dos SPD nas instalações FV. O teste deve ser conduzido usando uma corrente de teste > 200mA de acordo com as prescrições do normativa IEC60364

#### 5.3.1. Configuração do instrumento


 Colocar o cursor no item LOWΩ utilizando os botões "setas" (▲,▼) e confirmar com ENTER. No display aparece o ecrã seguinte:

|   | 15/05/12 15 | 5:34:26 |   |    |     |
|---|-------------|---------|---|----|-----|
| , | RPE máx.    |         |   | 1  | Ω   |
|   | Rcal        |         | - | -  | Ω   |
|   | Rpe         | -       | - | -  | Ω   |
|   | Itest       | -       | - | -  | m A |
|   |             |         |   |    |     |
|   |             |         |   |    |     |
|   | Selecção    |         |   | LO | WΩ  |

- Premir o botão ENTER. O instrumento mostra as opções:
   Configurações e Calibração dos cabos
- Usar os botões "setas" (▲,▼) para seleccionar o item "Configurações" e confirmar com ENTER. O instrumento mostra o seguinte ecrã

|   | 15/05/12 15:34:26   |    |     |
|---|---------------------|----|-----|
|   |                     |    |     |
|   | RPE máx.            | 1  | Ω   |
| 1 | Rcal                | -  | Ω   |
| ) |                     |    |     |
|   | Rpe                 | -  | Ω   |
|   | Itest               | -  | m A |
|   |                     |    |     |
|   | Calibração dos cabo | S  |     |
|   | Configurações       |    |     |
|   | Selecção            | LO | WΩ  |
|   |                     |    |     |

- Usando os botões "setas" (◀, ▶) é possível configurar o valor limite máximo da resistência Rpe que o instrumento usa como referência durante a medição (escala: 1Ω ÷ 5Ω)
- 5. Premir o botão SAVE para guardar as configurações efectuadas e a mensagem "Dados memorizados" será apresentada durante uns instantes. Premir o botão ESC/MENU para sair sem guardar e voltar ao ecrã anterior.





#### **ATENÇÃO**

As configurações guardadas para RPE máx. também têm efeito nas configurações do teste de continuidade contida na medição IVCK (MENU → IVCK)



#### 5.4. $M\Omega$ – CONFIGURAÇÕES DA MEDIÇÃO DO ISOLAMENTO

#### 5.4.1. Configuração do instrumento

 Colocar o cursor no item MΩ utilizando os botões "setas" (▲,▼) e confirmar com ENTER. No display aparece o ecrã seguinte:

| 15/05/12 15:34              | :26                  |           |
|-----------------------------|----------------------|-----------|
| Teste Iso<br>Ri min<br>Modo | 1000<br>1.0<br>Campo | V<br>MΩ   |
| Vtest                       | V                    | ٧         |
| Ri(+)                       |                      | $M\Omega$ |
| Ri(-)                       |                      | $M\Omega$ |
| Rp                          |                      | $M\Omega$ |
| Selecção                    | ΜΩ                   | ▼         |

- Premir o botão ENTER. O instrumento mostra a opção:
   Configurações:
- 3. Confirmar com **ENTER**. O instrumento mostra o seguinte ecrã:

| 15/05/12 15:34:             | :26                  |           |
|-----------------------------|----------------------|-----------|
| Teste Iso<br>Ri min<br>Modo | 1000<br>1.0<br>Campo | V<br>MΩ   |
| Vtest                       | V                    | ٧         |
| Ri(+)                       |                      | $M\Omega$ |
| Ri(-)                       |                      | $M\Omega$ |
| Rp                          |                      | $M\Omega$ |
| Configurações               |                      |           |
| Selecção                    | $M\Omega$            | ▼         |

- Para as configurações das opções usar os botões setas" (▲, ▼) e escolher a opção pretendida usando os botões "setas" (◀, ▶). Os parâmetros configuráveis são os seguintes:
  - ➤ Teste Iso → tensão de teste: 250, 500, 1000VCC
  - ➤ Modo → modos de funcionamento: Campo, Timer (Temporizador), Stringa (Bateria de painéis)
  - ➤ Ri Lim → valor limite mínimo da resistência de isolamento
  - ➤ Tempo de teste → valor máximo do tempo de teste (só para modo TIMER) (escala: 10s ÷ 300s com passos de 1s)
- 5. Premir o botão SAVE para guardar as configurações efectuadas e a mensagem "Dados memorizados" será apresentada durante uns instantes. Premir o botão ESC/MENU para sair sem guardar e voltar ao ecrã anterior.



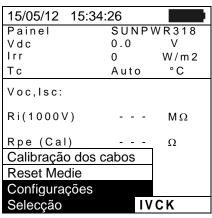


#### **ATENCÃO**

As configurações guardadas na tensão de teste também têm efeito nas configurações da medição do Isolamento contida na medição IVCK (MENU → IVCK)



#### 5.5. IVCK - CONFIGURAÇÕES DO TESTE RÁPIDO IVCK


A finalidade desta medição é a verificação da funcionalidades das ligações e das baterias de painéis de um campo fotovoltaico de acordo com o previsto pela IEC/EN62446 medindo a tensão em vazio e a corrente de curto-circuito nas condições de funcionamento e referidas a STC (através da medição opcional da Irradiação) e fornecendo um resultado imediato inerente à medição acabada de fazer tanto em termos absolutos como em comparação com as baterias de painéis anteriormente testadas. O teste também permite a execução sequencial (se seleccionados) do teste de continuidade e da medição do Isolamento.

#### 5.5.1. Configuração do instrumento

 Colocar o cursor no item IVCK utilizando os botões "setas" (▲,▼) e confirmar com ENTER. No display aparece o ecrã seguinte:

| 15/05/12 15:34 | :26   |           |
|----------------|-------|-----------|
| Painel         | SUNPV | VR318     |
| Vdc            | 0.0   | V         |
| Irr            | 0     | W/m2      |
| Tc             | Auto  | °C        |
| Voc,Isc:       |       |           |
| Ri(1000V)      |       | $M\Omega$ |
| Rpe (NoCal)    |       | Ω         |
|                |       |           |
| Selecção       | IV    | CK        |

- Premir o botão ENTER. O instrumento mostra as opções: Configurações, Reset Medie (Reposição das Médias) (consultar o § 6.3.4) e Calibração dos cabos (consultar o § 6.5.2)
- Usar os botões "setas" (▲,▼) para seleccionar o item "Configurações" e confirmar com ENTER. O instrumento mostra o seguinte ecrã:



- 4. Para as configurações das opções usar os botões 15/05/12 15:34:26 "setas" (▲,▼) e escolher a opção com os botões "setas" (◀, ▶). Os parâmetros configuráveis são os seguintes:
  - ➤ Painel → tipo de painel em teste
  - N.Mod. x Str. → número de painéis da bateria de painéis. Valores admissíveis 1 ÷ 50
  - ➤ Temp → método de medição da temperatura. Opções seleccionáveis:
    - "Auto" → medição automática (<u>recomendada</u>) efectuada em função do valor medido do Voc dos





painéis.

"Manual" → introdução por parte do operador do valor conhecido da temperatura do painel na linha a seguir.

**Aux** → medição da temperatura com sonda auxiliar PT300N.

- ➤ Toll. Voc (%) → valor em percentagem da tolerância limite pretendida (configurada pelo operador em função das suas exigências) para a medição de Voc executada pelo instrumento. Valores admissíveis: 0% ÷ 25%. O valor entre parênteses (4%) indica o erro de leitura do instrumento na medição de Voc.
- ➤ Toll. Isc (%) → valor em percentagem da tolerância limite pretendida (configurada pelo operador em função das suas exigências) para a medição de Isc executada pelo instrumento. Valores admissíveis: 0% ÷ 25%. O valor entre parênteses (4%) indica o erro de leitura do instrumento na medição de Isc
- ➤ Teste Iso → activação/desactivação da medição do Isolamento e configuração da tensão de teste. Opções possíveis: OFF, 250V, 500V, 1000V. Com função activada aparece a linha "Ri min" que permite a configuração do patamar limite mínimo no intervalo 0.1 ÷ 100MΩ
- ightharpoonup Teste RPE → activação/desactivação do teste de continuidade e configuração do valor do patamar limite na medição. Opções possíveis OFF, 1Ω ÷ 5Ω com passos de 1Ω
- 5. Premir o botão SAVE para guardar as configurações efectuadas e a mensagem "Dados memorizados" será apresentada durante uns instantes. Premir o botão ESC/MENU para sair sem guardar e voltar ao ecrã anterior.



#### **ATENÇÃO**

As configurações guardadas sobre a tensão de teste da medição do Isolamento efectuadas no interior da função IVCK também têm efeito nas configurações da medição simples (MENU  $\rightarrow$  M $\Omega$ )



#### 5.6. DB – GESTÃO DA BASE DE DADOS DOS PAINÉIS

O instrumento permite a gestão **até um máximo de 30 tipos de painéis FV** para além de um painel por defeito (não editável nem apagável) que pode ser usado como referência quando não existem informações sobre o tipo de painel à disposição.

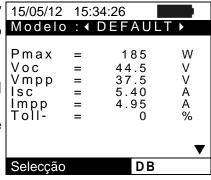
Os parâmetros, **referidos a 1 painel**, que podem ser configurados na definição estão indicados na Tabela 1 seguinte, juntamente com os campos de medição, resolução e condições de validade:

| Símbolo | Descrição                                    | Intervalo                               | Resol.        | Condições                                                                               |
|---------|----------------------------------------------|-----------------------------------------|---------------|-----------------------------------------------------------------------------------------|
| Nms     | Número de painéis por bateria                | 1 ÷ 50                                  | 1             |                                                                                         |
| Pmax    | Potência máxima nominal do painel            | 50 ÷ 3200W                              | 1W            | $\left  \frac{P_{\text{max}} - V_{mpp} \cdot I_{mpp}}{P_{\text{max}}} \right  \le 0.01$ |
| Voc     | Tensão em vazio                              | 15.00 ÷ 99.99V<br>100.0 ÷ 320.0V        | 0.01V<br>0.1V | Voc ≥ Vmpp                                                                              |
| Vmpp    | Tensão no ponto de máxima potência           | 15.00 ÷ 99.99V<br>100.0 ÷ 320.0V        | 0.01V<br>0.1V | Voc ≥ Vmpp                                                                              |
| Isc     | Corrente de curto-circuito                   | 0.5 ÷ 9.99A                             | 0.01A         | lsc ≥ Impp                                                                              |
| Impp    | Corrente no ponto de máxima potência         | 0.5 ÷ 9.99A                             | 0.01A         | Isc ≥ Impp                                                                              |
| Tall    | Tolerância negativa para a Pmax              | 0% ÷ 25.0%                              | 0.1%          | 400*Tals/Dragge : 05                                                                    |
| Toll -  | fornecida pelo construtor do painel          | 0 ÷ 99W                                 | 1             | 100*Tol <sup>-</sup> /Pnom< 25                                                          |
| T-II .  | Tolerância positiva para a Pmax              | 0 ÷ 25%                                 | 0.1%          | 400*Tal±/Daama : 25                                                                     |
| Toll +  | fornecida pelo construtor do painel          | 0 ÷ 99W                                 | 1             | 100*Tol+/Pnom< 25                                                                       |
| Alpho   | Confiniento de temperatura las               | -0.100÷0.100%/°C                        | 0.001%/°C     | 0.1*Alfa / Isc ≤ 0.1                                                                    |
| Alpha   | Coeficiente de temperatura Isc               | -9.99 ÷ 9.99mA/°C                       | 0.01mA/°C     | 0.1 Alia / ISC ≤ 0.1                                                                    |
| Beta    | Coefficients de temperature Vec              | -0.99 ÷ -0.01%/°C                       | 0.01%/°C      | 400*D-+-/\/ < 0.000                                                                     |
| Deta    | Coeficiente de temperatura Voc               | -0.999 ÷ 0.001V/°C                      | 0.001V/°C     | 100*Beta/Voc ≤ 0.999                                                                    |
| Gama    | Coeficiente de temperatura Pmax              | -0.99 ÷ -0.01%/°C                       | 0.01%/°C      |                                                                                         |
| NOCT    | Temperatura nominal de funcionamento da cela | 0 ÷ 100°C                               | 1°C           |                                                                                         |
| Tech.   | Efeitos devidos à tecnologia do painel       | STD (standard),<br>CAP (ef.capacitivos) |               |                                                                                         |
| Rs      | Resistência série interna                    | $0.00 \div 10.00\Omega$                 | 0.01Ω         |                                                                                         |

Tabela 1: Parâmetros associados a um painel FV

#### **ATENÇÃO**




- ➤ O item "Tech" refere-se à escolha da tecnologia do painel em teste. Seleccionar a opção "STD" no caso de teste em painéis FV do tipo "STANDARD" ou a opção "CAP" no caso de painéis FV com efeitos capacitivos consideráveis
- A escolha errada do tipo de tecnologia pode implicar um resultado negativo do teste final



#### 5.6.1. Definição de um novo painel FV

- Colocar o cursor no item DB utilizando os botões "setas" | 15/05/12 | 15:34:26 | Modelo : ✓ DEFAUL ecrã que indica:
  - O tipo de painel seleccionado
  - Os valores dos parâmetros associados ao painel (consultar o Tabela 1)
- Usar os botões "setas" (◀ , ►) para seleccionar o tipo de painel "DEFAULT" e confirmar com ENTER.

3. Premir o botão **ENTER**, seleccionar o comando "**Novo**" (que permite definir um novo painel) e confirmar novamente com **ENTER**. Usar os botões "setas" (▲,▼) para percorrer a lista dos parâmetros.





- 4. O instrumento apresenta um teclado virtual interno onde é possível definir o nome do painel (ex: SUNPOWER 210) usando os botões "setas" (▲, ▼, ◀ , ▶). A pressão do botão ENTER permite a introdução de cada caractere do nome digitado.
- Premir o botão SAVE para guardar o nome do novo painel assim definido ou o botão ESC/MENU para sair sem guardar.



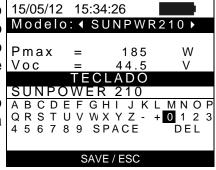
- 6. Inserir o valor de cada parâmetro (consultar o Tabela 1) em função da folha de dados eventual do construtor. Colocar o cursor no parâmetro a definir utilizando os botões "setas" (▲,▼) e configurar o valor utilizando os botões "setas" (◄, ▶). Manter premido os botões (◄, ▶) para efectuar uma rápida configuração dos valores.
- Premir o botão SAVE para guardar as configurações ou ESC/MENU para sair sem guardar.

| ) | 15/05/12                            |         |    |                     |              |                  |
|---|-------------------------------------|---------|----|---------------------|--------------|------------------|
|   | Modelo                              | :       | St | JNP۱                | <i>N</i> R 2 | 10               |
| 5 | Pmax                                |         | -  | 0                   | <b>•</b>     | W                |
| ) | Voc<br>Vmpp<br>Isc<br>Impp<br>Toll- | = = = = |    | 0.0<br>0.00<br>0.00 | )            | V<br>A<br>A<br>% |
|   |                                     |         |    | D                   | В            |                  |

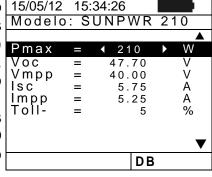
#### **ATENÇÃO**



- Premir o botão HELP durante alguns segundos no caso de valor não conhecido para inserir o valor por defeito.
- À pressão do botão SAVE o instrumento controla as condições indicadas na Tabela 1 e, no caso em que uma ou mais dessas condições não é verificada, fornece no display uma das mensagens de erro indicadas no § 6.6 e não guarda a configuração configurada enquanto as causas de erro não são resolvidas.




#### 5.6.2. Alteração de um painel FV existente


- Seleccionar o painel FV a alterar dentro da base de dados utilizando os botões "setas" (◀, ▶).
   15/05/12 15:34:26 Modelo: ◀ SUNF
- Premir o botão ENTER e seleccionar o comando "Alteração" usando o botão "setas" (▼).
- 3. Confirmar a selecção com ENTER.



- 4. O instrumento apresenta um teclado virtual interno com o qual é possível redefinir o nome do painel ou deixá-lo inalterado usando botões "setas" (▲, ▼, ◄, ▶). A pressão do botão ENTER permite a introdução de cada caractere do nome digitado.
- 5. Premir o botão **SAVE** para guardar o nome do novo painel assim definido ou para aceder à nova programação dos parâmetros.



- 6. Modificar o valor dos parâmetros pretendidos utilizando os botões "setas" (▲,▼) e configurar o valor utilizando os botões "setas" (◀, ▶). Manter premido os botões (◀, ▶) para efectuar uma rápida configuração dos valores. Premir o botão HELP durante alguns segundos no caso de valor não conhecido para inserir o valor por defeito.
- Premir o botão SAVE para guardar as configurações efectuadas ou ESC/MENU para sair sem guardar. O instrumento fornece neste caso a mensagem "Dados não memorizados".



#### 5.6.3. Eliminação de um painel FV existente

- Seleccionar o painel FV presente dentro da base de dados utilizando os botões "setas" (◀, ▶).
   15/05/12 15:34:26 Modelo: ◀ SUNI
- Premir o botão ENTER e seleccionar o comando "Eliminar (Cancella)" usando o botão "setas" (▼) para eliminar o painel seleccionado.
- Premir o botão ENTER e seleccionar o comando "Eliminar todos (Cancella Tutto)" usando o botão "setas" (▼) para eliminar qualquer painel presente dentro da base de dados.
- Confirmar a selecção com ENTER ou premir ESC/MENU para sair da função.





#### **ATENCÃO**

Não é possível alterar nem eliminar o painel FV por defeito presente como configuração de fábrica.



#### 6. INSTRUÇÕES DE FUNCIONAMENTO

### 6.1. MEDIÇÃO DA EFICIÊNCIA DAS INSTALAÇÕES FV COM O USO DA UNIDADE REMOTA SOLAR-02

Por uma questão de simplicidade, no seguimento deste § adoptar-se-á o termo "bateria de painéis (stringa)" embora o termo "campo fotovoltaico" seria o mais correcto. Do ponto de vista do instrumento a gestão de uma só bateria de painéis ou de várias baterias de painéis em paralelo (campo FV) é idêntica. O instrumento PVCHECK (Master) permite efectuar medições da eficiência em instalações FV em combinação com a unidade remota opcional SOLAR-02 à qual estão ligadas as sondas de irradiação e temperatura. Esta unidade remota é capaz de comunicar com a unidade Master (para a gestão das operações de sincronização e descarregamento dos dados) através de uma ligação por radiofrequência (**RF**) activa a uma distância máxima de cerca de **1m** entre elas.

#### **ATENÇÃO**



- A tensão máxima entre as entradas P e N é 1000VCC. Não medir tensões que excedam os limites expressos neste manual. Exceder estes limites poderá causar choques eléctricos no utilizador e danos no instrumento.
- Para garantir a segurança do operador, durante a fase das ligações, colocar fora de serviço o sistema em exame actuando nos interruptores/seccionadores a montante e a jusante do conversor CC/CA (inverter).

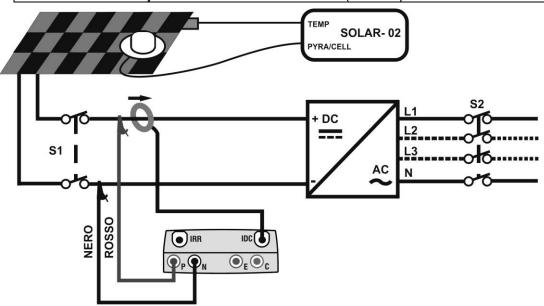



Fig. 4: Ligação do instrumento para medição da eficiência numa instalação FV

- 1. Verificar e, eventualmente, configurar no SOLAR-02 a sensibilidade da cela de referência coerentemente com o tipo de painéis FV que se pretende examinar (consultar o manual de instruções do SOLAR-02).
- Recomenda-se efectuar uma avaliação preliminar do valor da Irradiação na superfície dos painéis FV em exame através da unidade SOLAR-02 (em funcionamento independente) e a cela de referência.
- 3. Ligar o PVCHECK, verificar e, se necessário, modificar as configurações do instrumento relativamente ao tipo de unidade remota, ao patamar mínimo de irradiação, ao fundo de escala da pinça CC, ao período de integração e aos parâmetros do sistema em exame (consultar o § 5.1.4, § 5.1.5, § 5.1.6, § 5.2.1 e § 5.2.2)



- Para garantir a segurança do operador colocar fora de serviço o sistema em exame actuando nos interruptores/seccionadores a montante e a jusante do conversor CC/CA (inverter).
- 5. Aproximar entre si (máx. 1 m aprox.) o PVCHECK e o SOLAR-02. **Todos os instrumentos devem estar ligados** (consultar o manual de instruções do SOLAR-02 para mais detalhes).
- 6. No PVCHECK premir o botão MENU, seleccionar a função EFF e premir ENTER e aguardar que as duas unidades comecem a comunicar entre si. Esta condição é evidenciada pela presença simultânea dos seguintes indicadores:
  - > Símbolo 1 fixo (não intermitente) no display do PVCHECK
  - ➤ Símbolo ★ fixo (não intermitente) no display do SOLAR-02
- 7. Ligar as entradas **P** e **N** respectivamente aos pólos positivo e negativo da saída da bateria de painéis respeitando as cores indicadas na Fig. 4.
- 8. Ligar o conector de saída da pinça CC à entrada IDC.

#### **ATENÇÃO**



#### ANTES DE LIGAR A PINÇA CC AOS CONDUTORES

Ligar a pinça, verificar o LED indicador do estado das baterias internas da pinça (se presentes), seleccionar a escala correcta, premir o botão ZERO na pinça CC e verificar no display do PVCHECK se o valor ldc correspondente está em zero (contudo valores até 0.02A são aceitáveis).

9. Ligar a pinça de corrente CC ao condutor positivo da saída da bateria de painéis respeitando o sentido das "setas" presente na referida pinça conforme o indicado na Fig. 4. Colocar a pinça de modo que o toróide não fique nas proximidades do condutor negativo.

10. No display aparece um primeiro ecrã que assinala os valores dos parâmetros eléctricos na saída do painel/bateria de painéis

11. Antes de activar a medição verificar a presença do símbolo "上m" fixo que indica a ligação RF correcta com a unidade remota SOLAR-02

| S | 15/05/12                                            | 15:34:26                                  |                                        |
|---|-----------------------------------------------------|-------------------------------------------|----------------------------------------|
| 0 | Irr<br>Pnom<br>Tc<br>Te<br>Pdc<br>Vdc<br>Idc<br>ndc | 3.500<br>45<br>30<br>3.125<br>389<br>8.01 | W/m2<br>kW<br>°C<br>°C<br>kW<br>V<br>A |
|   | G<br>Selecção                                       | o para Ini                                | ciar<br>EFF <b>±⁄///</b>               |

12. Mantendo a unidade SOLAR-02 sempre nas proximidades da unidade principal, premir o botão **GO/STOP** no PVCHECK para activar o teste. A mensagem "**Aguardando início da gravação**" aparece no display da unidade principal e a mensagem "**HOLD**" no display do SOLAR-02 para além da indicação do tempo, em segundos, em espera do instante "00"

| 3     | 15/05/12   | 15:34:26    |            |
|-------|------------|-------------|------------|
| )     | Irr        |             | W/m2       |
| ,<br> | Pnom<br>Tc | 3.500<br>45 | kW<br>°C   |
| 1     | Te<br>Pdc  | 30<br>3.125 | ° C<br>k W |
| 1     | Vdc<br>Idc | 389<br>8.01 | V<br>A     |
|       | ndc        |             |            |
|       | Agua       | rdando ir   | ício da    |
|       |            | gravaçã     | 0          |
|       | Selecção   |             | EFF ±m     |
|       |            |             |            |



13. Ao atingir o instante "00" após a pressão do botão GO/STOP, o teste tem início e as duas unidades ficam sincronizadas. Nestas condições a mensagem "Gravação em curso" aparece no display da unidade principal e a mensagem "Gravando (Recording)..." aparece no display do SOLAR-02

| )           | 15/05/12                                            | 15:35:00                                  |                                        |
|-------------|-----------------------------------------------------|-------------------------------------------|----------------------------------------|
| า<br>ว<br>ว | Irr<br>Pnom<br>Tc<br>Te<br>Pdc<br>Vdc<br>Idc<br>ndc | 3.500<br>45<br>30<br>3.125<br>389<br>8.01 | W/m2<br>kW<br>°C<br>°C<br>kW<br>V<br>A |
|             | Gra<br>Selecção                                     | vação em                                  | curso<br>EFF <b>±</b> ml               |

- 14. Em qualquer momento será possível analisar o estado actual da gravação através da pressão do botão MENU. Serão visualizados:
  - Data e hora de início da gravação
  - > O valor configurado do período de integração
  - O número de Períodos decorridos desde o início da gravação
  - A capacidade de memória residual de gravação.



Premir o botão ESC para sair do ecrã

- 15. Neste ponto, é possível colocar a unidade SOLAR-02 na proximidade das baterias de painéis FV para efectuar as medições de irradiação e temperatura através das respectivas sondas. Quando a distância entre a unidade SOLAR-02 e PVCHECK é tal que não permite a ligação RF, no display do SOLAR-02, o símbolo "

  "" fica intermitente durante cerca de 30s depois desaparece, enquanto o PVCHECK fica à procura durante 1 minuto aprox.
- 16. Colocar a cela de referência na superfície dos painéis FV. Consultar o respectivo manual de instruções para uma montagem correcta.
- 17. Colocar o sensor de temperatura em contacto com a parte de trás do painel fixando-o com um pouco de fita e evitando tocar-lhe para não falsear a medição.
- 18. Aguardar alguns segundos para permitir às sondas atingir uma medição estável e depois ligar a sonda de Irradiação à entrada **PYRA/CELL** e a sonda de temperatura à entrada **TEMP** da unidade SOLAR-02.
- 19. Aguardar pela mensagem "**READY**" no display do SOLAR-02 a indicar que a unidade detectou os dados com Irradiação solar > patamar mínimo configurada (consultar o § 5.1.5)
- 20. Com a mensagem "READY" no display aguardar durante cerca de 1 minuto de modo a recolher um certo número de amostragens.
- 21. Desconectar as sondas de Irradiação e temperatura da unidade SOLAR-02 e aproximá-la do PVCHECK (máx. 1m).
- 22. A unidade principal PVCHECK deve estar na modalidade **EFF**. Se estiver ausente o símbolo "♣•••• intermitente, premir o botão ▲ para reactivar a procura da ligação RF.
- 23. Premir o botão ▼ no SOLAR-02 para reactivar a ligação RF. Consequentemente na unidade principal será visualizada a mensagem "ligação rádio activa".
- 24. Para parar o teste premir o botão **GO/STOP** no instrumento e confirmar com **ENTER** se deseja parar a gravação.
- 25. A mensagem "**SEND**" é apresentada no display da unidade SOLAR-02 para indicar a transferência dos dados para a unidade principal.



- 26. Após a fase automática de transferência de dados, o instrumento apresentará:
  - ➤ **Resultado SIM**: se existe pelo menos 1 valor entre os detectados que satisfaça as relacções indicadas no § 5.2.3
  - ➤ **Resultado NÂO**: se NÃO existe nenhum valor entre os detectados que satisfaça as relacções indicadas no § 5.2.3
  - Impossível efectuar a análise se a irradiação não nunca atingiu um valor estável superior ao patamar mínimo configurado ou se não existe nenhum valor válido durante toda a gravação (nDC > 1.15).

| Não apresen | tará i  | nenhum resulta  | ado (SI   | M ou NÃO) ร | se o |
|-------------|---------|-----------------|-----------|-------------|------|
| instrumento | foi     | configurado     | com       | correcção   | de   |
| temperatura | tipo "ı | nDC" (consultai | r o § 5.2 | 2.3).       |      |



27. Premir **SAVE** para guardar os resultados obtidos (consultar o § 7.1) ou ESC para sair do ecrã e voltar ao ecrã inicial



6.2. MEDIÇÃO DOS PARÂMETROS DA INSTALAÇÃO FV SEM USO DO SOLAR-02

O teste de "eficiência das instalações FV" sem uso da unidade remota opcional SOLAR-02 permite apenas avaliar os parâmetros de tipo eléctrico na saída de uma bateria de painéis ou de um campo fotovoltaico (grandezas Vdc, ldc e Pdc) que podem ser gravados periodicamente com período de integração programável (consultar o § 5.2.1). Nesta modalidade não são avaliados os valores da Irradiação, Te, Tc, o valor da Eficiência **nDC** e não é fornecido nenhum resultado por parte do instrumento.

#### **ATENÇÃO**



- A tensão máxima entre as entradas P e N é 1000VCC. Não medir tensões que excedam os limites expressos neste manual. Exceder estes limites poderá causar choques eléctricos no utilizador e danos no instrumento
- Para garantir a segurança do operador, durante a fase das ligações, colocar fora de serviço o sistema em exame actuando nos interruptores/seccionadores a montante e a jusante do conversor CC/CA (inverter).

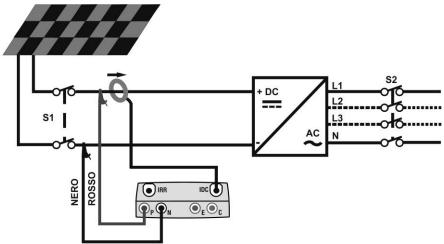



Fig. 5: Ligação do instrumento para Medição dos parâmetros da instalação FV sem SOLAR-02

- 1. Seleccionar a opção "NÂO" relativamente ao tipo de unidade remota no teste EFF (consultar o § 5.1.4), configurar o fundo de escala da pinça CC (consultar o § 5.1.4), o eventual factor de correcção da pinça CC (consultar o § 5.1.6), o período de integração e a potência nominal da instalação (consultar o § 5.2.1 e § 5.2.2).
- Para garantir a segurança do operador colocar fora de serviço o sistema em exame actuando nos interruptores/seccionadores a montante e a jusante do conversor CC/CA (inverter).
- 3. Ligar as entradas **P** e **N** respectivamente aos pólos positivo e negativo da saída da bateria de painéis respeitando as cores indicadas na Fig. 5.
- 4. Ligar o conector de saída da pinça CC à entrada IDC.

# ↑ Li

#### **ATENCÃO**

#### ANTES DE LIGAR A PINÇA CC AOS CONDUTORES

Ligar a pinça, verificar o LED indicador do estado das baterias internas da pinça (se presentes), seleccionar a escala correcta, premir o botão ZERO na pinça CC e verificar no display do PVCHECK se o valor ldc correspondente está em zero (Contudo valores até 0.02A são aceitáveis).



- 5. Ligar a pinça de corrente CC no condutor positivo na saída da bateria de painéis respeitando o sentido da "setas" existente na referida pinça conforme o indicado na Fig. 5. Colocar a pinça em modo que o toróide não fique na proximidade do condutor negativo.
- 6. No display aparece a primeiro ecrã que apresenta os valores dos parâmetros eléctricos na saída do painel/bateria de painéis.

| 15/05/12                                            | 15:34:26                          |                                        |
|-----------------------------------------------------|-----------------------------------|----------------------------------------|
| Irr<br>Pnom<br>Tc<br>Te<br>Pdc<br>Vdc<br>Idc<br>ndc | 3.500<br><br>3.125<br>389<br>8.01 | W/m2<br>kW<br>°C<br>°C<br>kW<br>V<br>A |
| G<br>Selecção                                       | o para Ini                        | ciar<br>EFF                            |

7. Premir o botão **GO/STOP** no PVCHECK para activar o teste. A mensagem "**Aguardando início da gravação**" aparece no display do instrumento aguardando pelo instante "00"



8. Ao atingir o instante "00" após a pressão do botão GO/STOP o teste tem início. Nestas condições, a mensagem "Gravação em curso" aparece no display do instrumento.



Início 15/05/12 15:30:00

5 s

61

0 d 1 h

- Em qualquer momento será possível analisar o estado actual da gravação através da pressão do botão MENU. Serão apresentados:
  - Data e hora de início gravação
  - > O valor configurado do período de integração
  - O número de Períodos decorridos desde o início da gravação
  - A capacidade de memória residual de gravação.

Gravação em curso

15/05/12 15:35:00

Período: Número IP

Autonomia

Premir o botão **ESC** para sair do ecrã.

- 10. Para parar o teste premir o botão GO/STOP no instrumento e confirmar com ENTER se deseja parar a gravação.
- 11. Premir **SAVE** para guardar os resultados obtidos (consultar o § 7.1) ou ESC para sair do ecrã e voltar ao ecrã inicial.



# 6.3. TESTE RÁPIDO EM PAINÉIS E BATERIAS DE PAINÉIS FV (IVCK) 6.3.1. Introdução

Esta função executa uma série de testes rápidos num painel/bateria de painéis FV medindo sequencialmente:

- A tensão em vazio Voc e a corrente de curto-circuito Isc de acordo com as prescrições da norma IEC/EN62446 com possibilidade de medição (utilizando as respectivas sondas) também dos valores da irradiação e temperatura dos painéis.
- Medição da resistência de isolamento (se activada consultar o § 5.5.1) executada exclusivamente no modo STRINGA (BATERIA DE PAINÉIS) (consultar o § 6.4.4) ou seja efectuando automaticamente um curto-circuito interno entre os terminais de entrada P e N e realizando a medição entre este ponto de curto-circuito e o terminal de entrada E.
- ➤ Teste de continuidade dos condutores de protecção (se activado consultar o § 5.5.1) com 200mA entre os terminais de entrada E e C do instrumento.

A medição da Irradiação pode ser feita através de uma das seguintes modalidades:

- Cela de referência ligada directamente a PVCHECK
- Cela de referência ligada a SOLAR-02 em ligação RF com PVCHECK

As medições de irradiação são efectuadas sempre em tempo real; portanto, é impossível iniciar uma gravação "remota" dos valores de irradiação através de SOLAR-02

Se o patamar de Irradiação mínimo (consultar o § 5.1.5) é:

- 0 → o instrumento não controla a presença da cela de referência, as variações de irradiação, o número dos painéis e não apresenta mensagens de erro se não for possível calcular os valores transpostos sob STC de Voc e Isc. Esta modalidades é indicada para efectuar uma sessão de testes de maneira extremamente rápida num número elevado de baterias de painéis.
- > 0 (aconselhado >700W/m²) → o instrumento executa todos os controlos previstos para o teste I-V, gere todas as condições e as mensagens de erro do teste I-V (num. Mod. errado, Temp. Fora de escala, presença cela, Irr. Min, etc..) e calcula os valores sob STC de Voc e Isc. Esta modalidades é recomendada quando se pretenda efectuar testes mais precisos sobre os painéis/baterias de painéis em exame

Em geral, a página dos resultados incluirá:

- A descrição do painel em uso
- Os valores da Irradiação e temperatura (se disponíveis)
- Os valores médios de Voc e Isc calculados como média dos correspondentes valores de OPC no últimos 10 testes memorizados e guardados. Se o número de testes é < 10 a média é calculada sobre o número de testes disponíveis. O primeiro teste apresentará traços no campo "valores médios" visto que não existem testes anteriores para calcular a média.
- Os valores de Voc e Isc medidos sob OPC e os eventuais resultados parciais (presentes apenas se os valores STC não estão disponíveis) obtidos para comparação com os valores médios.
- Os valores de Voc e Isc calculados sob STC (se disponíveis) e os eventuais resultados parciais obtidos para comparação dos valores calculados sob STC com os nominais (inseridos na DB painéis).
- O resultado global do teste (OK(NÃO). O resultado global será calculado com base nos resultados parciais obtidos:
  - Com base nos resultados parciais de STC (se estes estão disponíveis)
  - Com base nos resultados parciais de OPC (se os valores STC não estão disponíveis)

O instrumento não apresentará nenhum resultado global se não estiver disponível nenhum resultado parcial.

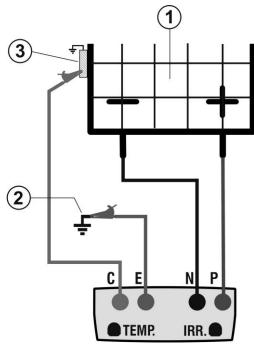


#### 6.3.2. Execução do teste rápido IVCK sem medição da Irradiação

# M

#### **ATENÇÃO**

Não utilize o instrumento para ensaios IVCK <u>em módulos fotovoltaicos com uma eficiência >19%</u>. Verifique previamente as características técnicas dos módulos fotovoltaicos antes de realizar os testes para evitar possíveis danos no instrumento.


#### **ATENÇÃO**



- A tensão máxima entre as entradas P, N, E e C é 1000VCC. Não medir tensões que excedam os limites expressos neste manual.
- Nunca efectuar testes em painéis ou baterias de painéis FV conectados ao conversor CC/CA.
- A corrente máxima tolerável pelo instrumento é 15A. Antes de efectuar as medições de IVCK verificar sempre se o instrumento está ligado a <u>APENAS A UMA BATERIA DE PAINÉIS</u> e não a várias baterias de painéis ligadas em paralelo para evitar o possível dano do instrumento.
- 1. Ligar o instrumento premindo o botão ON/OFF
- 2. Verificar se a unidade remota SOLAR-02 não está seleccionada (consultar o § 5.1.4 configuração NÂO).
- 3. Verificar se o valor da Irradiação mínimo configurado na secção "Irradiação" (consultar o § 5.1.5) está igual a **0.**
- Colocar o cursor no item IVCK utilizando os botões "setas" (▲,▼) e confirmar com ENTER. No display aparece o ecrã mostrado ao lado. O significado dos parâmetros é o seguinte:
  - ➤ Painel → tipo de painel em teste.
  - Vdc → valor da tensão na saída do painel/bateria de painéis medido em tempo real.
  - ➤ Irr → valor da Irradiação medido em tempo real.
  - ➤ Tc → valor da temperatura do painel (consultar o § 5.5.1).
  - ➤ Voc, Isc → secção com visualização do resultado OK/NÂO da medição de Voc e Isc.
  - ➤ Ri() → o valor entre parênteses pode ser NÃO/tensão de teste seleccionada (consultar o § 5.5.1). O valor de Ri indica a resistência de isolamento.
  - ➤ Rpe() → o valor entre parênteses pode ser NÃO, Cal ou NoCal (consultar o § 5.5.1). O valor de Rpe indica o resultado do teste de continuidade.
- 3. Premir o botão **ENTER**, seleccionar o item "**Configurações**" e confirmar outra vez com **ENTER**. Efectuar as configurações no instrumento conforme indicado no § 5.5.1.
- 4. Se necessário, premir o botão ENTER, seleccionar o item "Repor Médias (Reset Medie)" e confirmar, outra vez, com ENTER. Efectuar a operação como § 6.3.4.
- 5. Se necessário, premir o botão **ENTER**, seleccionar o item "**Calibração dos cabos**" e confirmar, outra vez, com **ENTER**. Efectuar a eventual operação como § 6.5.2.
- 6. Ligar o instrumento ao painel/bateria de painéis em teste e, eventualmente, ao nodo principal de terra da instalação e às massas metálicas ligadas à terra conforme mostrado na Fig. 6. Em especial, ligar o pólo Negativo na saída do painel/bateria de painéis ao terminal N e o pólo Positivo na saída do painel/ bateria de painéis ao terminal P.

| 15/05/12 15:34 | :26       |
|----------------|-----------|
| Painel         | SUNPWR318 |
| Vdc            | 0.0 V     |
| Irr            | W/m2      |
| Tc             |           |
| Voc,Isc:       |           |
| Ri(1000V)      | M Ω       |
| Rpe (Cal)      | Ω         |
|                |           |
| Selecção       | IVCK      |
| 3              |           |





#### **LEGENDA**:

- E: Cabo verde
- C: Cabo azul
- P: Cabo vermelho
- N: Cabo preto
- 1. Painel/Bateria de painéis FV
- Referência principal de terra da instalação
- 3. Estrutura metálica de ligação à terra da instalação

Fig. 6: Ligação paro teste IVCK sem medição da Irradiação

# $\triangle$

#### **ATENÇÃO**

À pressão do botão **GO/STOP** o instrumento pode fornecer diversas mensagens de erro (consultar o § 6.6) e, devido a isso, não efectuar o teste. Verificar e eliminar, se possível, as cause dos problemas antes de continuar com o teste.

 Premir o botão GO/STOP para activar o teste. No caso de ausência de condições de erro, o instrumento apresenta a mensagem "Medição em curso..." e a medição da tensão em vazio entre os terminais P e N e da corrente de curto-circuito (para valores de lsc ≤15A)

| 1  |                  |         |           |
|----|------------------|---------|-----------|
| de | 15/05/12 15:34:2 | 26      |           |
| a  | Painel           | SUNP    | VR318     |
|    | vuc              | 548.0   | V         |
| da | • • •            | 0 \     | N/m2      |
| de | Tc               | Auto °  | С         |
|    | Voc,Isc:         |         |           |
|    | Ri(1000V)        |         | $M\Omega$ |
|    | Rpe (Cal)        |         | Ω         |
|    |                  |         |           |
|    | Medição e        | m curso |           |
|    | Selecção         |         | IVCK      |

- 10.No final das medições de Voc e Isc a mensagem "OK" é 15/05/12 fornecida no caso de resultado positivo do teste (valores medidos dentro das tolerâncias configuradas no instrumento).
- 11.Com medição do Isolamento seleccionada o instrumento continua o teste mantendo em curto-circuito os terminais P e N e executando o teste entre este ponto e o terminal E durante um tempo necessário para obter um resultado estável.
- 12.O valor da resistência de isolamento é apresentado no campo "Ri" e a mensagem "OK" no caso de resultado selecção positivo do teste (valor medido superior ao limite mínimo configurado no instrumento)



IVCK



13.Com medição da Continuidade seleccionada o instrumento continua o teste abrindo o curto-circuito e executando o teste entre os terminais E e C

14.O valor da resistência no teste de continuidade é apresentado no campo "Rpe" e a mensagem "OK" no caso de resultado positivo do teste (valor medido inferior ao limite máximo configurado no instrumento)

15.A mensagem "Resultado OK" é finalmente mostrada pelo instrumento no caso de resultado positivo de todos os testes efectuados.

| 15/05/12 15:34:2 | 26        |           |    |  |
|------------------|-----------|-----------|----|--|
| Painel           | SUNPWR318 |           |    |  |
| Vdc              | 548.0 V   |           |    |  |
| Irr              | 0         | W/m       | 2  |  |
| Тс               | Auto °    | С         |    |  |
| Voc,Isc:         |           |           | ок |  |
| Ri(1000V)        | 116       | $M\Omega$ | ок |  |
| Rpe (Cal)        | 2.00      | Ω         | ок |  |
| 3                |           |           |    |  |
| Resultado: OK    |           |           |    |  |
| ▼                |           | IVC       | K  |  |

16.Premir o botão "setas" ▼ para visualizar a página seguinte onde são apresentados os valores dos parâmetros Voc e Isc. Nesta página são visualizados:

- O painel em uso
- Os valores médios de Voc e Isc nas condições OPC
- Os valores de Voc e Isc medidos sob OPC e os respectivos resultados parciais obtidos para comparação com os valores médios. Em geral:

| 15/05/12 15:34: | 26        |  |  |
|-----------------|-----------|--|--|
| Painel:         | SUNPWR210 |  |  |
| Irr             | W/m2      |  |  |
| Tc (AUTO)       | °C        |  |  |
| VocMed@OPC      | 647V      |  |  |
| IscMed@OPC      | 5.43A     |  |  |
| Voc@OPC         | 647V OK   |  |  |
| Isc@OPC         | 5.35A OK  |  |  |
| Voc@STC         | V         |  |  |
| Isc@STC         | A         |  |  |
| Resultado: OK   |           |  |  |
| <b>A</b>        | IVCK      |  |  |

$$Esito\ Voc_{@OPC} = OK \quad \text{se} \quad 100 \times \left| \frac{VocMed_{@OPC} - Voc_{@OPC}}{VocMed_{@OPC}} \right| \le \left( \text{Tol Voc} + 4\% \right)$$

$$Esito\ Isc_{@OPC} = OK \quad \text{se} \quad 100 \times \left| \frac{IscMed_{@OPC} - Isc_{@OPC}}{IscMed_{@OPC}} \right| \le \left( \text{Tol Isc} + 4\% \right)$$

- O valor global dos resultados:
  - OK: se todos os resultados OPC são OK,
  - NÃO se um dos resultados OPC é NÃO
- 17. Premir o botão "setas" ▲ para voltar ao ecrã anterior.
- 18. Premir o botão **SAVE** para guardar o resultado do teste na memória do instrumento (consultar o § 7.2) ou o botão **ESC/MENU** para sair do ecrã sem guardar e voltar ao ecrã principal de medição.

#### **ATENÇÃO**



Na página dos resultados aparecem os valores médios de Voc e Isc. Estes valores contêm os valores médios de Voc e Isc nas condições OPC calculados como média sobre os últimos 10 testes anteriormente memorizados. Se o utente executou e memorizou um número de testes <10 ou repôs os valores médios (consultar o § 6.3.4) a média apresentada durante o teste N+1 será a calculada sobre os N valores disponíveis.



#### 6.3.3. Execução do teste rápido IVCK com medição da Irradiação

# $\Lambda$

#### **ATENÇÃO**

Não utilize o instrumento para ensaios IVCK <u>em módulos fotovoltaicos com uma eficiência >19%</u>. Verifique previamente as características técnicas dos módulos fotovoltaicos antes de realizar os testes para evitar possíveis danos no instrumento.

#### **ATENÇÃO**

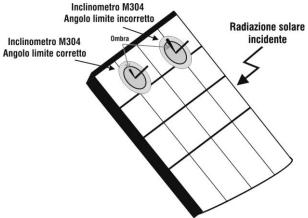


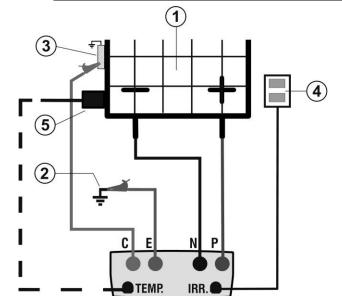
- A tensão máxima entre as entradas P, N, E e C é 1000VCC. Não medir tensões que excedam os limites expressos neste manual.
- Nunca efectuar testes em painéis ou baterias de painéis FV ligados ao conversor CC/CA.
- A corrente máxima tolerável pelo instrumento é 15A. Antes de efectuar as medições de IVCK verificar sempre se o instrumento está ligado a <u>APENAS A UMA BATERIA DE PAINÉIS</u> e não a várias baterias de painéis ligadas em paralelo para evitar o possível dano do instrumento.
- 1. Ligar o instrumento premindo o botão ON/OFF.
- 2. A medição da Irradiação é efectuada através de um dos dois modos seguintes:
  - Medição através de cela de referência ligada directamente ao PVCHECK.
  - Medição através de cela de referência ligada ao SOLAR-02 em ligação RF com PVCHECK.
- 3. Verificar se a configuração da unidade remota SOLAR-02 está coerente com o tipo de medição que se pretende realizar (consultar o § 5.1.4).
- 4. Verificar o valor de irradiação mínimo configurado (consultar o § 5.1.5).
- 5. Colocar o cursor no item IVCK utilizando os botões "setas" (▲,▼) e confirmar com ENTER. No display aparece o ecrã mostrado ao lado. O significado dos parâmetros é o seguinte:
  - ➤ Painel → tipo de painel em teste.
  - Vdc → valor da tensão na saída do painel/bateria de painéis medido em tempo real.
  - ▶ Irr → valor da Irradiação medido em tempo real.
  - $\rightarrow$  Tc  $\rightarrow$  valor da temperatura do painel (ver § 5.5.1).
  - Voc, Isc → secção com visualização resultado OK/NÃO da medição de Voc e Isc
  - ➤ Ri () → o valor entre parênteses pode ser NÃO/tensão de teste seleccionada (consultar o § 5.5.1). O valor de Ri indica a resistência de isolamento.
  - ➤ Rpe () → o valor entre parênteses pode ser NÃO, Cal ou NoCal (consultar o § 5.5.1). O valor de Rpe indica o resultado do teste de continuidade.
- 6. Premir o botão **ENTER**, seleccionar o item "**Configurações**" e confirmar outra vez com **ENTER**. Efectuar as configurações no instrumento conforme indicado no § 5.5.1
- 7. Se necessário premir o botão **ENTER**, seleccionar o item "**Reset Medie (Repor Médias)**" e confirmar outra vez com **ENTER**. Efectuar a operação como no § 6.3.4.
- 8. Se necessário premir o botão ENTER, seleccionar o item "Calibração dos cabos" e confirmar outra vez com ENTER. Efectuar a operação conforme indicado no § 6.5.2.
- 9. Montar a haste no disco do acessório opcional M304 e mantê-la apoiada na superfície do painel. Verificar se a sombra da haste projectada no disco cai dentro do "círculo concêntrico limite" interno ao referido disco (consultar a Fig. 7). No caso contrário, o ângulo entre os raios solares e a superfície do painel é muito elevado e portanto as medições efectuadas pelo instrumento NÃO são de considerar confiáveis. Repetir as operações noutros momentos do dia.





10. Fixar o suporte ao painel usando os parafusos fornecidos e montar a cela de referência sobre ele possivelmente com os terminais de saída virados para baixo. Rodar a cela até apoiá-la na aleta existente no suporte de modo da torna-la exactamente paralela à superfície do painel e fixá-la depois através dos respectivos parafusos



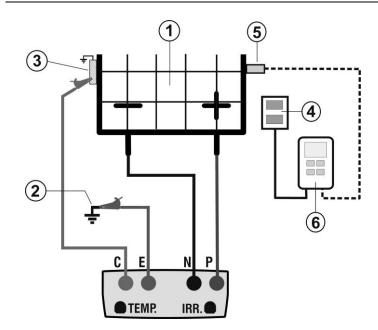


Fig. 7: Posicionamento do inclinómetro opcional M304

- 11. Ligar a saída da cela, correspondente ao tipo de painel em teste, à entrada IRR. do instrumento usando o cabo fornecido à referida cela ou à entrada PYRA/CELL da unidade remota SOLAR-02 se utilizada (consultar a Fig. 8 e Fig. 9)
- 12. Ligar, se utilizado, o sensor de temperatura à entrada **TEMP** do instrumento e à parte de trás do painel sob uma cela usando fita adesiva ou à entrada **TEMP** da unidade remota SOLAR-02 se utilizada (consultar a Fig. 8 e Fig. 9)
- 13. Ligar o instrumento ao painel/bateria de painéis em teste e, eventualmente, ao nodo principal de terra da instalação e às massas metálicas ligadas à terra conforme mostrado nas Fig. 8 e Fig. 9. Em especial ligar o pólo Negativo na saída do painel/bateria de painéis ao terminal N e o pólo Positivo na saída do painel/bateria de painéis ao terminal P



#### **ATENÇÃO**

No caso de utilização da unidade remota SOLAR-02 para medição da Irradiação verificar se a comunicação rádio RF com a unidade master PVCHECK está sempre activa (símbolo "Lim" acesso fixo no display)




#### LEGENDA:

- E: Cabo verde
- C: Cabo azul
- P: Cabo vermelho
- N: Cabo preto
- 1. Painel/Bateria de painéis FV
- Referência principal de terra da instalação
- 3. Estrutura metálica de ligação à terra da instalação
- Cela de referência para medição da irradiação
- 5. Sensor de temperatura (se necessário)

Fig. 8: Ligação para o teste IVCK com medição directa da irradiação





#### **LEGENDA**:

E: Cabo verde

C: Cabo azul

P: Cabo vermelho

N: Cabo preto

1. Painel/Bateria de painéis FV

2. Referência principal de terra da instalação

3. Estrutura metálica de ligação à terra da instalação

4. Cela de referência para medição da irradiação

5. Sensor temperatura (se necessário)

6. Unidade remota SOLAR-02

Fig. 9: Ligação para o teste IVCK com medição da irradiação através do SOLAR-02

- 14. No ecrá inicial da modalidades **IVCK** são apresentados em tempo real os valores de:
  - ➤ Painel → tipo de painel em teste

  - ➤ Irr → irradiação (proveniente da medição directa o SOLAR-02 em ligação a RF)
  - ➤ Tc → temperatura do painel (no modo MAN ou AUX) e o respectivo modo de medição ou "- - -" no modo AUTO
  - ➤ O eventual símbolo "♣m" da ligação RF com a unidade SOLAR-02

| 3 | 15/05/12 15:34 | :26            |
|---|----------------|----------------|
|   | Painel         | SUNPWR318      |
|   | Vdc            | 548.0 V        |
|   | Irr            | 856 W/m2       |
| , | Tc             | Auto °C        |
|   | Voc,Isc:       |                |
| ) | Ri(1000V)      | M Ω            |
| ) | Rpe (Cal)      | Ω              |
| ) |                |                |
|   |                |                |
| a | Selecção       | IACK <b>∓‴</b> |



## **ATENCÃO**

À pressão do botão **GO/STOP** o instrumento pode fornecer diferentes mensagens de erro (consultar o § 6.6) e, devido a isso, não efectuar o teste. Verificar e eliminar, se possível, as causas dos problemas antes de continuar com o teste.

15.Premir o botão **GO/STOP** para activar o teste. No caso de 15/05/12 15:34:26 ausência de condições de erro, o instrumento apresenta a mensagem "**Medição em curso...**" e a medição da tensão em vazio entre os terminais P e N e da corrente de curto-tro de circuito (para valores de Isc ≤15A)





16.No final das medições de Voc e Isc a mensagem "OK" é 15/05/12 15:34:26 apresentada no caso de resultado positivo do teste (valores medidos dentro das tolerâncias definidas no instrumento).

17.Com a medição do Isolamento seleccionada o instrumento continua o teste mantendo em curto-circuito os terminais P e N e executando o teste entre este ponto e o terminal E durante um tempo necessário para obter um resultado estável.

18.O valor da resistência de isolamento é apresentado no campo "Ri" e a mensagem "OK" no caso de resultado positivo do teste (valor medido superior ao limite mínimo configurado no instrumento)

19.Com a medição da Continuidade seleccionada o instrumento continua o teste abrindo o curto-circuito e executando o teste entre os terminais E e C.

20.O valor da resistência, no teste de continuidade, é apresentado no campo "Rpe" e a mensagem "OK" no caso de resultado positivo do teste (valor medido inferio ao limite máximo configurado no instrumento).

21.A mensagem "Resultado OK" é finalmente mostrada pelo instrumento no caso de resultado positivo de todos os testes efectuados.

| е | 15/05/12 15:34:2 | 26     |     |         |    |
|---|------------------|--------|-----|---------|----|
| e | Painel           | SUNF   | W R | 31      | 8  |
| _ | Vdc              | 548.0  | ) V |         |    |
| O | Irr              | 856    | W/n | ո 2     |    |
|   | Tc               | Auto   | °C  |         |    |
| 0 | Voc,Isc:         |        |     | C       | ΣK |
| S | Ri(1000V)        | 116    | M   | Ω       | ΣK |
| 0 | Rpe (Cal)        |        | Ω   |         |    |
| _ |                  |        |     |         |    |
| O | Medição e        | m curs | 0   |         |    |
|   | Selecção         | IV     | СК  | <u></u> | m  |
| O |                  |        |     |         |    |

| o  | 15/05/12 15:34: | :26   |           |    |
|----|-----------------|-------|-----------|----|
| Δ  | Painel          | SUNP  | WR3       | 18 |
| C  | Vdc             | 548.0 | V         |    |
|    | Irr             | 856   | W/m2      | 2  |
| é  | Tc              | Auto  | °C        |    |
| 0  | Voc,Isc:        |       |           | ОК |
| ונ | Ri(1000V)       | 116   | $M\Omega$ | ОК |
| 0  | Rpe (Cal)       | 2.00  | Ω         | ок |

| Resultado | OK              |
|-----------|-----------------|
| ▼         | INCK <b>TIM</b> |

- 22. Premir o botão "setas" ▼ para visualizar a página seguinte em que são apresentados os valores dos parâmetros Voc e Isc. Nela são visualizados:
  - > O painel em uso
  - O valor da Irradiação
  - O valor da temperatura do painel
  - Os valores médios de Voc e Isc nas condições OPC
  - Os valores de Voc e Isc medidos em OPC
  - Os valores de Voc e Isc calculados em STC e os l respectivos resultados parciais obtidos para comparação com os valores nominais.

| 15/05/12 15:34:2 | 26        |
|------------------|-----------|
| Painel:          | SUNPWR210 |
| Irr              | W/m2      |
| Tc (AUTO)        | 57°C      |
| VocMed@OPC       | 647V      |
| IscMed@OPC       | 5.43A     |
| Voc@OPC          | 647V      |
| Isc@OPC          | 5.35A     |
| Voc@STC          | 787V OK   |
| Isc@STC          | 5.72A OK  |
| Resulta          | ado OK    |
| <b>A</b>         | INCK TIM  |

Em geral:

Esito 
$$Voc_{@STC} = OK$$
 se  $100 \times \left| \frac{VocNom_{@STC} - Voc_{@STC}}{VocNom_{@STC}} \right| \le \left( \text{Tol Voc} + 4\% \right)$   
Esito  $Isc_{@STC} = OK$  se  $100 \times \left| \frac{IscNom_{@STC} - Isc_{@STC}}{IscNom_{@STC}} \right| \le \left( \text{Tol Isc} + 4\% \right)$ 

Os valores de Voc e Isc nominais são os valores presentes na DB painéis interno ao instrumento (consultar o § 5.6).

- O valor global dos resultados:
  - o OK: se todos os resultados STC são OK,
  - NÃO se um dos resultados STC é NÃO
- 23. Premir o botão "setas" ▲ para voltar ao ecrã anterior.



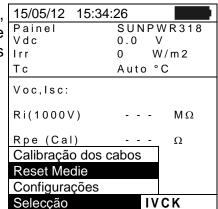
24. Premir o botão **SAVE** para guardar o resultado do teste na memória do instrumento (consultar o § 7.2) ou o botão **ESC/MENU** para sair do ecrã sem guardar e voltar ao ecrã principal de medição.

## **ATENÇÃO**



Na página dos resultados aparecem os valores médios de Voc e Isc. Estes valores contêm os valores médios de Voc e Isc nas condições OPC calculados como média dos últimos 10 testes anteriormente memorizados. Se o utente executou e memorizou um número de testes <10 ou repôs os valores médios (consultar o § 6.3.4) a média visualizada durante o teste N+1 será a calculada sobre os N valores disponíveis

## 6.3.4. Repor Médias (Reset Medie)


Se não forem medidos os valores da Irradiação, o instrumento fornece um resultado comparando os valores medidos com os valores médios calculados com base nas medições anteriormente guardadas.

Portanto, neste caso, os valores médios calculados pelo instrumento assumem especial importância.

No caso de se iniciar uma nova campanha de medição com variações significativas da Irradiação ou temperatura é aconselhável anular os valores médios de referência para depois recalculá-los com base nas novas medições.

Para repor os valores médios seguir aos seguintes passos:

 Dentro da modalidades IVCK, premir o botão ENTER, seleccionar o item "Repor Médias (Reset Medie)" e confirmar outra vez com ENTER para anular os valores médios até àquele momento calculados.



Os valores médios são automaticamente restaurados e também **alterados e depois guarda** um dos seguintes parâmetros:

- > Tipo de painel FV
- Número de painéis x bateria de painéis

Os valores médios não são, por sua vez, restaurados se o operador altera a modalidade de funcionamento para depois voltar a esta modalidade.



## 6.3.4.1. Situações anómalas do teste IVCK

 Quando o instrumento detecta nos terminais P-N, P-E e N-E uma tensão superior a 1000V não executa o teste, emite um sinal acústico prolongado e apresenta a mensagem "Vin > 1000"

| , | 15/05/12 15:34: | 26   |       |           |
|---|-----------------|------|-------|-----------|
| _ | Painel          |      | 1PW   | R318      |
| , | Vdc             | 0.0  | V     |           |
| 1 | Irr             | 0    | W     | / m 2     |
|   | Tc              | Aut  | o ° ( |           |
|   | Voc,Isc:        |      |       |           |
|   | Ri(1000V)       |      | -     | $M\Omega$ |
|   | Rpe (Cal)       |      | -     | Ω         |
|   |                 |      |       |           |
|   | Vin >           | 1000 | )     |           |
|   | Selecção        | I    | VCK   |           |

 Quando o instrumento detecta nos terminais P e N uma tensão inferior a 15V não executa o teste, emite um sinal acústico prolongado e apresenta a mensagem "Tensão baixa"

| 15/05/12 15:34 | :26       |
|----------------|-----------|
| Painel         | SUNPWR318 |
| Vdc            | 0.0 V     |
| Irr            | 0 W/m2    |
| Tc             | Auto °C   |
| Voc,Isc:       |           |
| Ri(1000V)      | M Ω       |
| Rpe (Cal)      | Ω         |
|                |           |
| Tensã          | o baixa   |
| Selecção       | IVCK      |

 Quando o instrumento detecta nos terminais E e C uma tensão superior a > 5V não executa o teste, emite um sinal acústico prolongado e apresenta a mensagem "Tensão > Lim"

| 15/05/12 15:34: | 26        |
|-----------------|-----------|
| Painel          | SUNPWR318 |
| Vdc             | 0.0 V     |
| Irr             | 0 W/m2    |
| Tc              | Auto °C   |
| Voc,Isc:        |           |
| Ri(1000V)       | ΜΩ        |
| Rpe (Cal)       | Ω         |
| Tonsão          | o > Lim   |
|                 |           |
| Selecção        | IVCK      |

 Quando o instrumento detecta uma corrente Isc superior a 15A não executa o teste, emite um sinal acústico prolongado e apresenta a mensagem "Corrente Isc muito alta"

| 15/05/12 15:34 | :26          |
|----------------|--------------|
| Painel         | SUNPWR318    |
| Vdc            | 0.0 V        |
| Irr            | 0 W/m2       |
| Tc             | Auto °C      |
| Voc,Isc:       |              |
| Ri(1000V)      | MΩ           |
| Rpe (Cal)      | Ω            |
|                |              |
| Corrente Is    | c muito alta |
| Selecção       | IVCK         |

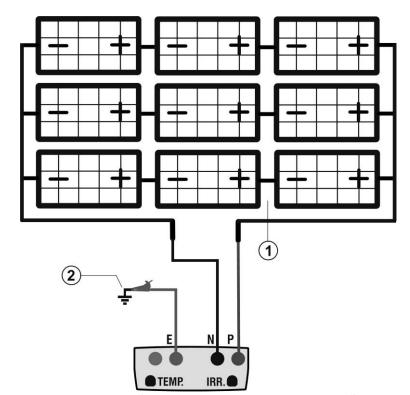


## 6.4. MEDIÇÃO DO ISOLAMENTO EM PAINÉIS/BATERIAS DE PAINÉIS/CAMPOS FV $(M\Omega)$ 6.4.1. Introdução

A finalidade desta medição é a execução das medições de resistência de isolamento dos condutores activos de um painel, de uma bateria de painéis, de todo o campo FV e de eventuais massas metálicas não ligadas à terra de acordo com as prescrições de IEC/EN62446. Em geral, o instrumento executa a medição do Isolamento nos seguintes modos:

- ➤ Modo CAMPO → utilizado para a medição da resistência de isolamento de um Campo FV (gerador fotovoltaico) formado por uma ou mais bateria de painéis ligadas em paralelo. O instrumento executa a medição nos pólos Positivo e Negativo do campo
- Modo TIMER → o instrumento executa a medição em modo contínuo (com duração máx. 300s) apenas no terminal "P" visualizando o valor mínimo obtido da resistência no final do período de tempo seleccionado. Pode ser utilizado para a medição da resistência de isolamento de várias massas metálicas não ligadas às referências de terra.
- Modo BATERIA DE PAINÉIS → utilizada para a medição do Isolamento exclusivamente em painéis individuais ou baterias de painéis FV, executando automaticamente um curto-circuito interno entre os pólos Positivo e Negativo sem a necessidade de utilizar um interruptor externo para pôr em curto-circuito os terminais positivo e negativo e realizando a medição entre este ponto de curto-circuito e a referência de terra da instalação

### 6.4.2. Execução da medição do Isolamento - Modo CAMPO


- Colocar o cursor no item MΩ utilizando os botões "setas" (▲,▼) e confirmar com ENTER. No display aparece o ecrã mostrado ao lado:
- Premir o botão ENTER, activar o item "Configurações" e, eventualmente, modificar os parâmetros pretendidos (ver § 6.4.1). São apresentados no display os seguintes parâmetros:
  - ➤ Teste Iso → tensão de teste seleccionada (250, 500, ou 1000VCC).
  - ightharpoonup Ri min ightharpoonup patamar limite mínimo para a medição do Isolamento (recorda-se que a normativa CEI 64-8 fixa um valor mínimo de isolamento igual a **1M**Ω com tensões de teste de 500V ou 1000V).
  - ➤ Modo → modo de medição: CAMPO.
  - Vtest → tensões de teste reais aplicadas respectivamente entre o pólo Positivo e o pólo Negativo do campo em relação à referência de terra .
  - ➤ Ri (+) → medição da resistência de isolamento entre o pólo Positivo do campo FV e a referência de terra.
  - ➢ Ri (-) → medição da resistência de isolamento entre o pólo Negativo do campo FV e a referência de terra.





- ➤ Rp → valor final da medição obtido pelo paralelo dos valores de Ri (+) e Ri (-) que é confrontado pelo instrumento com o valor Ri min configurado.
- ▶ Botão ▼ → acesso à segunda página com os valores medidos das tensões VPN, VEP e VEN.
- 3. Ligar o instrumento ao campo FV em teste e ao nodo principal de terra da instalação conforme mostrado na Fig. 10. Em especial ligar o pólo Negativo de saída do campo FV ao terminal N e o pólo Positivo de saída do campo FV ao terminal P





#### LEGENDA:

- E: Cabo verdeP: Cabo vermelho
- N: Cabo preto
- Campo FV não ligado à terra
- 2. Referência principal de terra da instalação

## Fig. 10: Ligação do instrumento para medição do Isolamento no modo CAMPO

# $\triangle$

## **ATENÇÃO**

À pressão do botão **GO/STOP**, o instrumento pode apresentar diferentes mensagens de erro (consultar o § 6.6) e, devido a isso, não efectuar o teste. Verificar e eliminar, se possível, as causas dos problemas antes de continuar com o teste.

4. Premir o botão **GO/STOP** para activar o teste. No caso de ausência de condições de erro, o instrumento apresenta a mensagem "**Medição em curso...**"

conforme mostrado no ecrã ao lado:

| 15/05/12 15.34              | 4.20                      |
|-----------------------------|---------------------------|
| Teste Iso<br>Ri min<br>Modo | 1000 V<br>1.0 ΜΩ<br>Campo |
| Vtest 1043                  | V 1057 V                  |
| Ri (+)                      | Ω                         |
| Ri (-)                      | Ω                         |
| Rp                          | Ω                         |
| Medição                     | em curso                  |
| Selecção                    | <b>M</b> Ω ▼              |

- 5. No final da medição, o instrumento apresenta os valores Ri (+), Ri (-) e Rp, respectivamente, resistências de isolamento dos pólos Positivo e Negativo e paralelo das duas resistências do campo FV em teste. Se o valor de Rp é superior ao limite mínimo configurado, o instrumento apresenta a mensagem "Resultado OK" caso contrário apresenta a mensagem "Resultado NÂO OK"
- 6. Premir o botão **SAVE** para guardar o resultado do teste na memória do instrumento (consultar o § 7.2) ou o botão **ESC/MENU** para sair do ecrã sem guardar e voltar ao ecrã principal de medição



 $M\Omega$ 

٧

 $M\Omega$ 

da

1000

Timer

1.0

15/05/12

Teste Iso

Ri min

Modo

Vtest

Ri(+)

Selecção

Tempo teste: 200s



## 6.4.3. Execução da medição do Isolamento – Modo TIMER

- 1. Colocar o cursor no item  $M\Omega$  utilizando os botões "setas"  $(\blacktriangle, \blacktriangledown)$  e confirmar com **ENTER**. No display aparece o ecrã mostrado ao lado
- Premir o botão ENTER, activar o item "Configurações" e, eventualmente, modificar os parâmetros pretendidos (consultar o § 5.4.1). São apresentados no display os seguintes parâmetros:
  - ➤ **Teste Iso** → tensão de teste seleccionada (250, 500, 1000VCC)
  - ➤ Ri min → patamar limite mínimo para a medição do Isolamento
  - ➤ Modo → modo de medição: TIMER
  - ➤ Vtest → tensão de teste real aplicada
  - ➤ Ri (+) → resistência de isolamento mínima entre o pólo Positivo e a referência de terra detectada durante a duração da medição
  - ➤ Tempo teste → duração do teste configurável no intervalo 10 ÷ 300s
  - ▶ Botão ▼ → acesso à segunda página com os valores medidos das tensões VPN, VEP e VEN
- 3. Ligar o instrumento ao painel/bateria de painéis FV em teste e, de seguida, a eventuais massas metálicas não ligadas à terra e ao nodo principal de terra da instalação (consultar a Fig. 11). Em especial, ligar o pólo Positivo de saída do painel/bateria de painéis FV e as massas metálicas ao terminal P

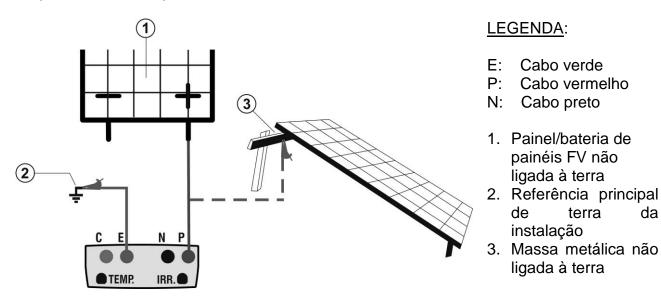



Fig. 11: Ligação do instrumento para medição do Isolamento no modo TIMER

## **ATENÇÃO**

À pressão do botão GO/STOP, o instrumento pode apresentar diferentes mensagens de erro (consultar o § 6.6) e, devido a isso, não efectuar o teste. Verificar e eliminar, se possível, as causas dos problemas antes de continuar com o teste.

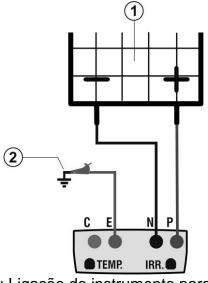


4. Premir o botão GO/STOP para activar o teste. No caso de ausência de condições de erro, o instrumento apresenta a mensagem "Medição em curso..." conforme mostrado no ecrã ao lado



- 5. No final da medição o instrumento apresenta o valor Ri(+)min, ou seja, o valor mínimo da resistência de isolamento do painel/bateria de painéis FV (ou de outras massas metálicas) em teste, continuamente medido durante a duração da medição. Se o resultado for superior ao limite mínimo configurado o instrumento apresenta a mensagem "Resultado OK" caso contrário apresenta a mensagem "Resultado OK" conforme mostrado no ecrã ao lado.
- Premir o botão SAVE para guardar o resultado do teste na memória do instrumento (consultar o § 7.2) ou o botão ESC/MENU para sair do ecrã sem guardar e voltar ao ecrã principal de medição.






6.4.4. Execução da medição do Isolamento – Modo BATERIA DE PAINÉIS (STRINGA)

## **ATENÇÃO**



- Antes de efectuar as medições de Isolamento na modalidade "STRINGA (BATERIA DE PAINÉIS)", verificar sempre se o instrumento está ligado <u>APENAS A UMA BATERIA DE PAINÉIS</u> e não a várias baterias de painéis ligadas em paralelo para evitar o possível dano do instrumento
- Desconecte SEMPRE o stringa em prueba do inversor antes de executar o teste
- Colocar o cursor no item MΩ utilizando os botões "setas" (▲,▼) e confirmar com ENTER. No display aparece o ecrã mostrado ao lado.
- Premir o botão ENTER, activar o item "Configurações" e, eventualmente, modificar os parâmetros pretendidos (consultar o § 5.4.1). São apresentados no display os seguintes parâmetros:
  - ➤ Teste Iso → tensão de teste seleccionada (250, 500, 1000VCC)
  - Ri min → patamar limite mínimo para a medição do Isolamento (recorda-se que a normativa CEI 64-8 fixa um valor mínimo de isolamento igual a 1MΩ com tensões de teste de 500V ou 1000V)
  - ➤ Modo → modo de medição: STRINGA (BATERIA DE PAINÉIS)
  - ➤ Vtest → tensão de teste real aplicada
  - ➤ Rp → valor final da medição obtido pelo paralelo dos valores da resistência de isolamento entre os pólos Positivo e Negativo e a referência de terra detectada durante a medição, confrontado pelo instrumento com o valor Ri min configurado
  - ▶ Botão ▼ → acesso à segunda página com os valores medidos das tensões VPN, VEP e VEN
- 3. Ligar o instrumento ao painel/bateria de painéis FV em teste e ao nodo principal de terra da instalação conforme mostrado na Fig. 12. Em especial ligar o pólo Negativo de saída do campo FV ao terminal N e o pólo Positivo de saída do campo FV ao terminal P



#### LEGENDA:

E: Cabo verde

P: Cabo vermelho

15/05/12

Teste Iso

Ri min

Modo

Vtest

Selecção

Rр

15:34:26

1000

Bateria de

 $M\Omega$ 

painéis

MO

 $M\Omega$ 

1.0

N: Cabo preto

- Painel/bateria de painéis FV não ligada à terra
- Referência principal de terra da instalação

Fig. 12: Ligação do instrumento para medição do Isolamento no modo STRINGA (BATERIA DE PAINÉIS)





## **ATENÇÃO**

À pressão do botão **GO/STOP**, o instrumento pode apresentar diferentes mensagens de erro (consultar o § 6.6) e, devido a isso, não efectuar o teste. Verificar e eliminar, se possível, as causas dos problemas antes de continuar com o teste

4. Premir o botão GO/STOP para activar o teste. No caso de ausência de condições de erro, o instrumento apresenta a mensagem "Medição em curso..." conforme mostrado no ecrã ao lado.

| , | 15/05/12 15:34:             | 26                                |               |
|---|-----------------------------|-----------------------------------|---------------|
| ) | Teste Iso<br>Ri min<br>Modo | 1000<br>1.0<br>Bateria<br>painéis | V<br>MΩ<br>de |
|   | Vtest                       | 1020                              | V             |
|   | Rp                          |                                   | $M\Omega$     |
|   |                             |                                   |               |
|   | Medição e                   | m curso                           |               |
|   | Selecção                    | $M\Omega$                         | ▼             |

5. No final da medição o instrumento apresenta o valor Rp da medição obtido do paralelo dos valores da resistência de isolamento entre os pólos Positivo e Negativo e a referência de terra confrontado pelo instrumento com o valor Ri min configurado. Se o resultado for superior ao limite mínimo configurado o instrumento apresenta a mensagem "Resultado OK" caso contrário apresenta a mensagem "Resultado NÃO OK" conforme mostrado no ecrã ao lado.



**6.** Premir o botão **SAVE** para guardar o resultado do teste na memória do instrumento (consultar o § 7.2) ou o botão **ESC/MENU** para sair do ecrã sem guardar e voltar ao ecrã principal de medição.



## 6.4.4.1. Situações anómalas

 Em qualquer modalidade de funcionamento quando o instrumento detecta nos terminais P-N, P-E e N-E uma tensão superior a 1000V não executa o teste, emite um sinal acústico prolongado e apresenta a mensagem "Vin > 1000"



 Na modalidade de funcionamento BATERIA DE PAINÉIS quando o instrumento detecta uma corrente Isc superior a 15A não executa o teste, emite um sinal acústico prolongado e apresenta a mensagem "Corrente Isc muito alta"



3. Na modalidade de funcionamento BATERIA DE PAINÉIS quando o instrumento detecta, entre os terminais P e N, uma corrente < 0.2A não executa o teste, emite um sinal acústico prolongado e apresenta a mensagem "Corrente < Lim"</p>



4. Na modalidade de funcionamento BATERIA DE PAINÉIS quando o instrumento detecta, entre os terminais P e N, uma tensão < 15V não executa o teste e apresenta a mensagem "Tensão baixa"





## 6.5. MEDIÇÃO DA CONTINUIDADE EM PAINÉIS/BATERIAS DE PAINÉIS/CAMPOS FV (LOW $\Omega$ ) 6.5.1. Introdução

A finalidade desta medição é a execução do teste de continuidade dos condutores de protecção e equipotenciais (ex: da ponteira de terra e terras externas ligadas) e dos condutores de ligação à terra dos SPD nas instalações FV. O teste deve ser realizado usando uma corrente de teste > 200mA de acordo com as prescrições da normativa IEC/EN62446

## 6.5.2. Calibração dos cabos de medida

- Colocar o cursor no item LOWΩ utilizando os botões "setas" (▲,▼) e confirmar com ENTER. No display aparece o ecrã mostrado ao lado
- 2. Conectar os cabos de medida entre si conforme mostrado na Fig. 13

| ; | 15/05/12 15:34:26                                    |
|---|------------------------------------------------------|
| , | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| ) | Rpe Ω                                                |
|   | Itest mA                                             |
|   |                                                      |
|   | Selecção LOWΩ                                        |

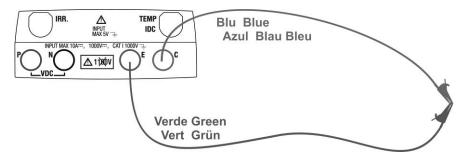



Fig. 13: Compensação da resistência dos cabos de medida

- 2. Premir o botão **ENTER**. O instrumento mostra as opções: **Configurações** e **Calibração dos cabos**
- 3. Usar os botões "setas" (▲,▼) para seleccionar o item "Calibração dos cabos" e confirmar com ENTER

|   | 15/05/12 15:34:26                 |
|---|-----------------------------------|
| ) | RPE máx. 1 $\Omega$ Rcal $\Omega$ |
|   | Rpe Ω                             |
|   | Itest mA                          |
|   |                                   |
|   | Calibração dos cabos              |
|   | Configurações                     |
|   | Selecção LOWΩ                     |
|   |                                   |

- Premir o botão GO/STOP para activar a calibração. A mensagem "Medição em curso..." é apresentado no display.
- 5. No final do procedimento de compensação, nos casos em que o valor da resistência medida é inferior a  $5\Omega$ , o instrumento emite um duplo sinal acústico para assinalar o resultado positivo do teste e apresenta o seguinte ecrã:

| 15/05/12 15: | 34:26    |     |
|--------------|----------|-----|
| RPE máx.     | 1        | Ω   |
| Rcal         |          | Ω   |
| Rpe          |          | Ω   |
| Itest        |          | m A |
|              |          |     |
|              |          |     |
| Medição      | em curso |     |
| Selecção     | LOV      |     |
| -            |          |     |

Ω

Ω

Ω

 $LOW\Omega$ 

m A

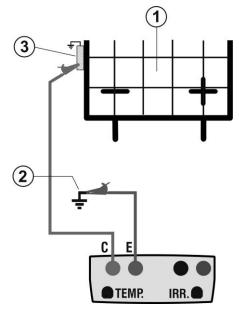


- 6. O valor da resistência compensada dos cabos que será subtraído a todas as próximas medições de continuidade surge em correspondência com o item "Rcal" e a mensagem "Calibração OK" é apresentado no display
- 7. Para eliminar o valor da resistência compensada efectuar um novo procedimento de compensação com uma resistência superior a  $5\Omega$  como, por exemplo, as ponteiras abertas. No display, o valor em Rcal é colocado em zero.

| 15/05/12 15:34   | :26       |     |
|------------------|-----------|-----|
| RPE máx.<br>Rcal | 1<br>0.02 | Ω   |
| Rpe              |           | Ω   |
| Itest            |           | m A |
|                  |           |     |
|                  | ção OK    | WO  |
| Selecção         | LO        | WΩ  |

RPE máx.

Rcal


Rpe

Itest

Selecção

## 6.5.3. Execução da medição da Continuidade

- 1. Colocar o cursor no item **LOW**Ω utilizando os botões 15/05/12 15:34:26 "setas" (▲,▼) e confirmar com ENTER. No display aparece o ecrã mostrado ao lado
- Premir o botão ENTER, activar o item "Configurações" e, eventualmente, modificar os parâmetros pretendidos (ver § 5.3.1). São apresentados no display os seguintes parâmetros:
  - ▶ RPE máx. → patamar máximo para a medição da Continuidade seleccionável no intervalo  $1\Omega \div 5\Omega$  com passos de  $1\Omega$  (recorda-se que a normativa CEI 64-8 não fixa um valor limite de resistência e valores normais são de, aproximadamente,  $1\Omega$  ou  $2\Omega$ )
  - > Rcal -> valor da resistência dos cabos de medida após ter efectuado a calibração dos mesmos
  - ➤ Rpe → resultado da medição da Continuidade
  - ▶ Itest → corrente real de teste
- 3. Premir o botão ENTER, activar o item "Calibração dos cabos" (consultar o § 6.5.2) para efectuar a calibração inicial dos cabos de medida.
- 4. Ligar o instrumento ao painel/bateria de painéis FV em teste e ao nodo principal de terra da instalação conforme mostrado na Fig. 14.



#### LEGENDA:

- Cabo verde
- Cabo azul
- Painel/bateria de painéis FV
- 2. Referência principal de terra da instalação
- 3. Estrutura metálica de ligação à terra da instalação

Fig. 14: Ligação do instrumento para medir a Continuidade em estruturas da instalação





## **ATENÇÃO**

À pressão do botão **GO/STOP**, o instrumento pode apresentar diferentes mensagens de erro (consultar o § 6.6) e, devido a isso, não efectuar o teste. Verificar e eliminar, se possível, as causas dos problemas antes de continuar com o teste

5. Premir o botão GO/STOP para activar o teste. No caso de ausência de condições de erro, o instrumento apresenta a mensagem "Medição em curso..." conforme mostrado no ecrã ao lado

| ) | 15/05/12 15:34:26                 |
|---|-----------------------------------|
| 9 | RPE máx. 1 $\Omega$ Rcal $\Omega$ |
|   | Rpe Ω                             |
|   | Itest mA                          |
|   |                                   |
|   | Medição em curso                  |
|   | Selecção LOWΩ                     |

- 6. No final da medição o instrumento apresenta o valor da resistência do objecto em teste. Se o resultado for inferior ao limite máximo configurado, o instrumento apresenta a mensagem "Resultado OK" caso contrário apresenta a mensagem "Resultado NÂO OK" conforme mostrado no ecrã ao lado.
- 7. Premir o botão **SAVE** para guardar o resultado do teste na memória do instrumento (consultar o § 7.2) ou o botão **ESC/MENU** para sair do ecrã sem guardar e voltar ao ecrã principal de medição.

| 15/05/12 15:34   | :26  |          |  |
|------------------|------|----------|--|
| Rpe máx.<br>Rcal | 1    | $\Omega$ |  |
| Rpe              | 0.23 | Ω        |  |
| ltest            | 210  | m A      |  |
|                  |      |          |  |
| Resultado: OK    |      |          |  |
|                  | LO   | WΩ       |  |



## 6.5.3.1. Situações anómalas

 Quando o instrumento detecta nos seus terminais E e C uma tensão superior a 5V não executa o teste, emite um sinal acústico prolongado e apresenta a mensagem "Tensão > Lim"

|   | 15/05/12 15:34:26   |
|---|---------------------|
| 1 | RPE máx. 1 $\Omega$ |
| ' | 12                  |
|   | Rpe Ω               |
|   | Itest mA            |
|   |                     |
|   |                     |
|   | Tensão > Lim        |
|   | Selecção LOWΩ       |

 Quando é detectado que a resistência calibrada é mais elevada do que a resistência medida, o instrumento emite um sinal acústico prolongado e apresenta a mensagem: "Calibração não OK"

| 15/05/12 15:34:26        |              |        |
|--------------------------|--------------|--------|
| RPE máx.<br>Rcal -       | 1            | Ω<br>Ω |
| Rpe -                    |              | Ω      |
| Itest -                  |              | m A    |
|                          |              |        |
| Calibração r<br>Selecção | não C<br>LON |        |

3. Quando o instrumento detecta nos seus terminais uma resistência superior a  $5\Omega$  emite um sinal acústico prolongado, anula o valor compensado e apresenta a mensagem "Calibração restaurada"

| 15/05/12 15:34 | :26    |      |
|----------------|--------|------|
|                |        |      |
| RPE máx.       | 1      | Ω    |
| Rcal           | 0.00   | Ω    |
|                |        |      |
| Rpe            |        | Ω    |
| Itest          |        | m A  |
|                |        |      |
|                |        |      |
| Calibração     | restau | rada |
| Selecção       | LO     | WΩ   |



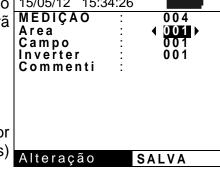
## 6.6. LISTA DAS MENSAGENS NO DISPLAY

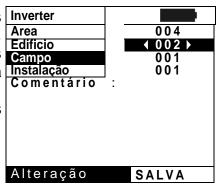
| MENSAGEM                               | DESCRIÇÃO                                                                                            |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| Função não disponível                  | A função/característica seleccionada não está disponível                                             |  |  |
| Dados não memorizados                  | O instrumento não é capaz de guardar os dados                                                        |  |  |
| Data errada                            | Inserir uma data de sistema coerente                                                                 |  |  |
| Erro transmissão RÁDIO                 | O instrumento não comunica via RF com unidades externas                                              |  |  |
| SOLAR-02:Firmware não correcto         | FW SOLAR-02 não coerente. Actualizar o firmware                                                      |  |  |
| Firmware não correcto                  | FW instrumento não adequado. Actualizar o firmware                                                   |  |  |
| Erro 4: contactar assistência          | Erro interno do instrumento                                                                          |  |  |
| Base de dados cheia                    | O número dos painéis inseridos na DB interna é > 30                                                  |  |  |
| Painel já existente                    | Nome do painel inserido já existente na DB                                                           |  |  |
| Memória cheia                          | Memória do instrumento cheia à pressão do botão GO                                                   |  |  |
| Erro: Vmpp >= Voc                      | Verificar as configurações do painel dentro da DB                                                    |  |  |
| Erro: Impp >= Isc                      | Verificar as configurações do painel dentro da DB                                                    |  |  |
| Erro: Vmpp * Impp >= Pmax              | Verificar as configurações do painel dentro da DB                                                    |  |  |
| Erro: Alpha muito alto                 | Verificar as configurações do painel dentro da DB                                                    |  |  |
| Erro: Beta muito alto                  | Verificar as configurações do painel dentro da DB                                                    |  |  |
| Erro: Gama muito alto                  | Verificar as configurações do painel dentro da DB                                                    |  |  |
| Erro: Toll muito alto                  | Verificar as configurações do painel dentro da DB                                                    |  |  |
| Aguardar análise dos dados             | Descarga de dados do SOLAR-02 e aguarda resultado do teste da                                        |  |  |
|                                        | eficiência FV                                                                                        |  |  |
| Erro na descarga dos dados             | Contactar assistência                                                                                |  |  |
| Erro memorização                       | Problemas no acesso à área da memória                                                                |  |  |
| Unidade remota não detectada           | O instrumento não detecta nenhuma unidade SOLAR-02                                                   |  |  |
| Impossível efectuar a análise          | Problemas nos dados descarregados do SOLAR-02. Verificar                                             |  |  |
| •                                      | configurações                                                                                        |  |  |
| Dados não disponíveis                  | Erro genérico. Repetir o teste                                                                       |  |  |
| Tensão negativa                        | Verificar as polaridades dos terminais de entrada do instrumento                                     |  |  |
| Tensão baixa<br>Vin > 1000             | Verificar a tensão entre os terminais de entrada P e N  Tensão entre os terminais de entrada > 1000V |  |  |
| N. painéis errado. Continuar?          | Configuração do número de painéis não coerente com Voc medida                                        |  |  |
| Temp. Cela Ref. além dos limites       | Temperatura medida pela cela de referência muito alta                                                |  |  |
| Temp. cela Rei. alem dos limites       | remperatura medida pela cela de referencia multo alta                                                |  |  |
| detectada.(ENTER/ESC)                  | Medição não executada na cela do painel                                                              |  |  |
| Bateria descarregada                   | Nível das baterias baixo. Inserir novas baterias no instrumento                                      |  |  |
| Aguardar arrefecimento                 | Instrumento sobreaquecido. Aguardar antes de retomar os testes                                       |  |  |
| Irradiação muito baixa                 | Valor de irradiação inferior ao limite mínimo configurado                                            |  |  |
| Erro NTC                               | Eficiência NTC interna comprometida. Contactar assistência                                           |  |  |
| Corrente Isc muito alta                | Corrente Isc medida > 15A                                                                            |  |  |
| Corrente < Lim                         | Corrente medida entre P e N inferior ao mínimo detectável                                            |  |  |
| Erro EEPROM: contactar assistência     | Erro interno do instrumento                                                                          |  |  |
| Erro FRAM: contactar assistência       | Erro interno do instrumento                                                                          |  |  |
| Erro RTC: contactar assistência        | Erro interno do instrumento                                                                          |  |  |
| Erro RÁDIO: contactar assistência      | Erro interno do instrumento                                                                          |  |  |
| Erro FLASH: contactar assistência      | Erro interno do instrumento                                                                          |  |  |
| Erro IO EXP: contactar assistência     | Erro interno do instrumento                                                                          |  |  |
| Tensão > limite                        | Tensão entre os terminais E e C > 10V                                                                |  |  |
| Etiqueta já atribuída                  | Alterar a referência numérica do marcador associado à medição                                        |  |  |
| Corrente Isc < Lim                     | Corrente Isc inferior ao mínimo detectável. Contactar assistência                                    |  |  |
| Atenção: curto-circuito interno        | Contactar assistência                                                                                |  |  |
| Atenção: fusível queimado              | Contactar assistência                                                                                |  |  |
| Calibração restaurada. Premir<br>ENTER | Valor da resistência dos cabos na entrada > 2Ω                                                       |  |  |
| Calibração não OK                      | Valor da resistência calibrada > resistência medida                                                  |  |  |
| Erro: medição offset Isc               | Erro interno do instrumento                                                                          |  |  |
| Rcal > R medida                        | Valor da resistência calibrada > resistência medida                                                  |  |  |
| Atenção tensão CA nos terminais P-N    | Presença de tensão CA na entrada                                                                     |  |  |
| Aguardar descarga do condensador       | Aguardar pela descarga do objecto em teste após isolamento                                           |  |  |



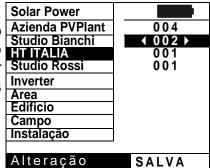
## 7. MEMORIZAÇÃO DOS RESULTADOS

O instrumento permite a memorização de máx. 999 resultados de medição. Os dados podem ser presentados novamente no display e eliminados a qualquer momento e é possível associar identificadores numéricos de referência mnemónica relativos á instalação, à bateria de painéis e ao painel FV (máx. 250).


## 7.1. GUARDAR AS MEDIÇÕES DE EFICIÊNCIA


- Premir o botão SAVE com o resultado da medição presente no display. O instrumento apresenta o ecrã mostrado ao lado com o teclado virtual.
- Usar os botões "setas" (▲,▼) e (◀, ►) para inserir uma breve descrição (máx. 13 caracteres) relativa ao teste efectuado.
- Premir outra vez o botão SAVE para confirmar a memorização dos dados ou ESC/MENU para sair sem guardar

| C           | 15/05/12                              | 15:34:26                          |                              |
|-------------|---------------------------------------|-----------------------------------|------------------------------|
| ã<br>a<br>e | Tc<br>Te<br>Pdc                       | 712<br>3.500<br>45<br>30<br>3.125 | W/m2<br>kW<br>°C<br>°C<br>kW |
|             |                                       | TECLAD                            | 0                            |
|             | INSTAL                                | .AÇAO R                           | ossi                         |
| 3           | ABCDE                                 | FGHLJ                             | KLMNOP                       |
| า           |                                       |                                   | - + 0 1 2 3                  |
|             | 4 5 6 7 8                             | 9 SPACE                           | DEL                          |
|             |                                       |                                   |                              |
|             |                                       | SAVE/ESC                          |                              |
|             | · · · · · · · · · · · · · · · · · · · |                                   |                              |


## 7.2. GUARDAR AS MEDIÇÕES DE IVCK, $M\Omega$ E LOW $\Omega$

- 1. Premir o botão **SAVE** com o resultado da medição 15/05/12 15:34:26 presente no display. O instrumento apresenta o ecrã mostrado ao lado com as seguintes opções: 15/05/12 15:34:26 | MEDIÇAO | Area | Campo | Campo
  - O primeiro local da memória disponível ("MEDIÇÃO")
  - O marcador de 1º nível (ex: Área)
  - O marcador de 2º nível (ex: Campo)
  - O marcador de 3º nível (ex: Inverter)
  - O campo "Comentário (Commenti)" em que o operador pode inserir uma curta descrição (máx. 13 caracteres) para a instalação.
- Para cada marcador podem ser atribuídas diversas etiquetas (5 etiquetas predefinidas e 5 personalizadas). Seleccionar o marcador de nível pretendido com os botões "setas" (◀ , ▶) e premir o botão ENTER para a selecção de uma das etiquetas disponíveis.
- Seleccionar uma das etiquetas disponíveis usando os botões "setas" (▲,▼) e confirmar com o botão ENTER.





4. Aos nomes das 5 etiquetas predefinidas podem ser, adicionados, antes de efectuar as medições e através do software TopView, mais 5 nomes personalizados pelo utente. Neste caso, os novos valores podem ser seleccionados, como alternativa, aos predefinidos conforme mostrado no ecrã apresentado ao lado.





## **ATENÇÃO**



- Os nomes personalizados das etiquetas dos marcadores podem ser definidos **através do uso do software TopView** e carregados no instrumento através da ligação com um PC (secção "Ligação PC-Instrumento —) Gestão marcadores").
- É possível adicionar até 5 nomes personalizados para cada marcador para além dos 5 já existentes por defeito.
- Os nomes dos marcadores por defeito não podem ser eliminados. A eliminação dos nomes personalizados só pode ser efectuada através do software TopView
- 5. Usar os botões "setas" (▲,▼) e (◀, ▶) para o uso do teclado virtual no campo "Comentário (Commento)" em que o utente pode inserir uma curta descrição (máx. 13 caracteres). A pressão do botão ENTER permite a introdução de cada caractere do nome digitado.

  15/05/12 15:34:26

  MEDIÇÃO :
  HTITÁLIA :
  StringaUT :
  ModuloÃ1 :
  Commento :
  TECLA



6. Premir novamente o botão **SAVE** para completar a operação de guardar os dados ou **ESC/MENU** para sair sem guardar.

**TIPO** 

MEM - EFF

IST 08/04/2012

REG 13/05/2012

\*REG 14/05/2012

Eficiência

Abrir (Apri) Cancella

Selecção

003



#### **OPERAÇÕES COM RESULTADOS** 7.3.

### 7.3.1. Voltar a apresentar no display os resultados da eficiência FV

- 1. Premir o botão **ESC/MENU** para voltar ao menu principal, 15/05/12 15:34:26 seleccionar o item "MEM" e premir ENTER para entrar na MEM secção de visualização dos dados memorizados. O ecrã 001 mostrado ao lado é apresentado pelo instrumento com a 002 lista dos testes guardados.
- Usando os botões "setas" (▲,▼) e o botão "setas" ▶ seleccionar o item "Voltar a Apresentar (Richiama)" e, de seguida, "Eficiência" e confirmar com ENTER para Ric IVCK, Segurança apresentar apenas o resultado do teste.
- 3. Usando o botão "setas" ▶ é possível a visualização das seguintes etiquetas:
  - ➤ TIPO → indica o tipo de dado guardado: "REG" para um teste com um preciso resultado final SIM/NÃO, "\*REG" quando o instrumento não possui valores de irradiação e temperatura gravados pelo SOLAR-02 e "IST" para a memorização das condições instantâneas no display.
  - ➤ DATA → indica a data e a hora em que o dado foi guardado no instrumento.
  - ➤ **DESCRIÇÃO** → indica a descrição fornecida pelo utente na fase de guardar o dado.
- 4. Seleccionar o tipo de dado "IST", o item "Abrir (Apri))" e confirmar com ENTER. O instrumento mostra o ecrã sequinte
- 5. Premir o botão **ESC/MENU** para voltar ao ecrã anterior.

| 15/05/12                                            | 15:35:00                                                 |                                        |
|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------|
| Irr<br>Pnom<br>Tc<br>Te<br>Pdc<br>Vdc<br>Idc<br>ndc | 712<br>3.500<br>45<br>30<br>3.125<br>389<br>8.01<br>0.88 | W/m2<br>kW<br>°C<br>°C<br>kW<br>V<br>A |
| Res<br>Selecção                                     | ultados a                                                | análise<br>EFF                         |

- 6. Seleccionar o tipo de dado "REG", o item "Abrir (Apri)" e 15/05/12 confirmar com ENTER. O instrumento mostra o ecrã com os valores finais do teste realizado e a indicação do resultado final (SIM/NÃO) do teste
- 7. Seleccionando o tipo de dado "\*REG", o item "Abrir (Apri)" e a confirmação com ENTER, o instrumento mostra a mensagem "Impossível efectuar a análise" devido à falta de valores transferidos da unidade SOLAR-02. Os valores parciais desta medição só são visíveis transferindo os dados para um PC (consultar o § 8) Selecção através do software TopView





## 7.3.2. Voltar a apresentar no display os resultados da medição IVCK, $M\Omega$ e LOW $\Omega$

- Premir o botão ESC/MENU para voltar ao menu principal, seleccionar o item "MEM" e premir ENTER para entrar na secção de visualização dos dados memorizados. O ecrã mostrado ao lado é apresentado pelo instrumento em que mostra a lista dos testes guardados.
   15/05/12 15:34:26
   MEM DATA
   001 08/04/2012 12
   002 13/04/2012 12
   003 15/05/12 12
- 2. Usando os botões "setas" (▲,▼) e o botão "setas" ► seleccionar o item "Voltar a apresentar (Richiama)" e, de seguida, "IVCK, Segurança" e confirmar com ENTER para a visualização apenas dos resultados das medições da característica I-V.
- O campo "DATA" indica a data/hora em que foi guardado o resultado da medição, o campo "TIPO" indica o tipo de teste efectuado (LOWΩ, MΩ, IVCK).
- Usar o botão "setas" ▶ para passar à etiqueta 15/06/12 "Comentários (Commenti)".

  MEM
- 5. O instrumento apresentará o comentário inserido pelo operador durante o procedimento de memorização do dado (consultar o § 7.2) relativamente á instalação.
- 6. A presença do símbolo "\*" ao lado do número da medição indica que o instrumento efectuou o teste com gravação dos valores da Irradiação e Temperatura através da unidade remota mas esses valores não foram transferidos ou não estão disponíveis. Para estas medições não estarão disponíveis os valores convertidos em STC.
- 7. Premir **ESC/MENU** para sair do ecrã e voltar ao menu principal







7.3.2.1. Acesso aos dados guardados em memória – Visualização numérica

- Seleccionar uma linha correspondente a um resultado memorizado e premir o botão ENTER
- Seleccionar o item "Abrir (Apri)" e premir outra vez ENTER para entrar na secção de visualização dos resultados de medição expressos como:
  - Ecrãs numéricos dos parâmetros medidos nas condições standard (STC) e nas condições de funcionamento de teste (OPC) para o teste IVCK
  - Ecrãs numéricos dos parâmetros medidos nas medições de isolamento (MΩ) e continuidade (LOWΩ)

| ) | 15/05/12 | 15:34:2  | 6              |         |
|---|----------|----------|----------------|---------|
|   | MEM      | Commenti |                |         |
| Z | 001      |          |                | D ROSSI |
| S | 002      |          | STALA<br>BIANC |         |
| S |          |          |                |         |
| 9 |          |          |                |         |
|   | Abrir (A | (pri)    |                |         |
| S | Richian  | na 🕨     |                |         |
|   | Cancell  | a 🕨      | •              |         |
|   | Selecção |          | MEM            | IVCK    |
|   |          |          |                |         |

- 3. Para o teste **IVCK** são apresentados os valores dos seguintes parâmetros
  - > O painel em uso
  - O valor da Irradiação
  - O valor da temperatura do painel
  - Os valores médios de Voc e Isc nas condições OPC
  - Os valores de Voc e Isc medidos em OPC
  - Os valores de Voc e Isc calculados em STC e os respectivos resultados parciais obtidos para comparação com os valores nominais.

| 15/05/12 15:34 | :26         |  |
|----------------|-------------|--|
| Painel:        | SUNPWR210 ▲ |  |
| Irr            | 903W/m2     |  |
| Tc (AUTO)      | 57°C        |  |
| VocMed@OPC     | V           |  |
| lscMed@OPC     | A           |  |
| Voc@OPC        | 647V        |  |
| Isc@OPC        | 5.35A       |  |
| Voc@STC        | 787V OK     |  |
| Isc@STC        | 5.72A OK    |  |
| Resultado OK   |             |  |
| Selecção       | IVCK        |  |

- 4. Para o teste  $\mathbf{M}\Omega$  no modo CAMPO são apresentados os valores dos seguintes parâmetros:
  - Tensão nominal de teste configurada.
  - Limite mínimo configurado na medição do Isolamento
  - > O tipo de modo seleccionado.
  - Os valores reais das tensões de teste aplicadas
  - > O valor do isolamento do pólo Positivo Ri (+).
  - > O valor do isolamento do pólo Negativo Ri (-).
  - O valor final Rp do paralelo entre os valores Ri(+) e Ri(-).

| 15/05/12 1    | 5:34 | :26     |           |
|---------------|------|---------|-----------|
|               |      |         |           |
| Vtest         | :    | 1000    | V         |
| Ri min        | :    | 1.0     | $M\Omega$ |
| Modo          | :    | Campo   |           |
| Vtest 106     | 5    | 1064    | V         |
| Ri(+)         |      | > 1 0 0 | $M\Omega$ |
| Ri(-)         |      | > 1 0 0 | $M\Omega$ |
| Rр            |      | 72      | $M\Omega$ |
| Resultado: OK |      |         |           |
| Selecção      |      | МΩ      | ▼         |

- 5. Para o teste  $\mathbf{M}\Omega$  no modo TIMER são apresentados os valores dos seguintes parâmetros:
  - > Tensão nominal de teste configurada.
  - ➤ Limite mínimo configurado na medição do Isolamento
  - O tipo de modo seleccionado.
  - O valor real da tensão de teste aplicada.
  - O valor Ri(+) mínimo da resistência de isolamento do painel/bateria de painéis FV (ou de outros objectos) em teste continuamente medido durante a medicão.
  - O tempo de medição configurado.





- 6. Para o teste  $\mathbf{M}\Omega$  em modo BATERIA DE PAINÉIS são apresentados os valores dos seguintes parâmetros:
  - Tensão nominal de teste configurada.
  - Limite mínimo configurado na medição do Isolamento.
  - O tipo de modo seleccionado
  - O valor real da tensão de teste aplicada
  - O valor Rp da medição obtido pelo paralelo dos valores da resistência de isolamento entre os pólos Positivo e Negativo e a referência de terra confrontado pelo instrumento com o valor Ri min configurado.

| 15/05/12              | 15:34:26                                  |                                                  |
|-----------------------|-------------------------------------------|--------------------------------------------------|
| Vtest<br>Rlim<br>Modo | : 1000<br>: 1.0<br>. Bateria<br>. painéis | $\begin{matrix} V \\ M\Omega \\ de \end{matrix}$ |
| Vtest                 | 1020                                      | ٧                                                |
| Rр                    | > 1 0 0                                   | $M\Omega$                                        |
|                       |                                           |                                                  |
|                       |                                           |                                                  |
|                       | Resultado: OK                             |                                                  |
| Selecção              | ΜΩ                                        | ▼                                                |

- 7. Para o teste  $LOW\Omega$  são apresentados os valores dos seguintes parâmetros:
  - Patamar limite configurada para a medição da Continuidade.
  - Valor da resistência de calibração dos cabos de teste.
  - O valor da resistência do objecto em teste.
  - O valor real da corrente de teste aplicada.

| 3 | 15/05/12 15      | 5:34: | 26   |     |
|---|------------------|-------|------|-----|
|   | RPE máx.<br>Rcal | :     | 1.0  | Ω   |
|   | Rpe              | =     | 0.99 | Ω   |
|   | Itest            | =     | 212. | m A |
|   |                  |       |      |     |
|   | Resultado: OK    |       |      |     |
|   | Selecção         |       | LO   | WΩ  |

## 7.3.3. Eliminação dos dados em memória

- No interior da lista dos resultados guardados premir o botão ENTER para a visualização dos submenus.
   15/05/12 15:34:26
   MEM T
- 2. Seleccionar o campo "Eliminar (Cancella)", premir o botão 001
  - ▶. O instrumento permite seleccionar os itens:
  - ➤ Canc Ultima → Elimina o último teste guardado.
  - ➤ Canc Tutto → Elimina todo o conteúdo da memória
- 3. Seleccionar com os botões "setas" (♠,▼) a opção pretendida e premir o botão ENTER para confirmar a Abrir (Apri) Richi Cand
- Premir ESC/MENU para sair do ecrã e voltar ao menu principal



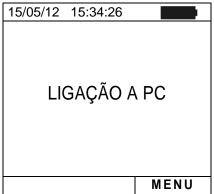


## 8. LIGAÇÃO DO INSTRUMENTO A PC

## **ATENÇÃO**

- A ligação entre PC e instrumento efectua-se através do cabo C2006.
- Para transferir dados para um PC, deverá ter previamente instalado o software de gestão Topview, que pode ser descarregado no link: https://www.ht-instruments.com/download




- Antes de efectuar a ligação, é necessário seleccionar no PC a porta utilizada. Para configurar estes parâmetros iniciar o software TopView e consultar a ajuda em linha do programa.
- A porta seleccionada n\u00e3o deve ser utilizada por outros dispositivos ou aplica\u00e7\u00e3es tais como rato, modem, etc. Fechar, eventualmente, processos em execu\u00e7\u00e3o a partir do fun\u00e7\u00e3o Gestor de Tarefas do Windows.
- A porta óptica emite radiações LED invisíveis. Não observar directamente com instrumentos ópticos. Aparelho LED da classe 1M segundo IEC/EN60825-1.

Para transferir os dados para um PC proceder do seguinte modo:

- 1. Ligar o instrumento premindo o botão ON/OFF.
- 2. Ligar o instrumento ao PC utilizando o cabo óptico/USB C2006 fornecido.
- 3. Premir o botão **ESC/MENU** para abrir o menu principal.
- Seleccionar com os botões "setas" (▲,▼) o item "PC" para entrar na modalidade de transferência de dados e confirmar com ENTER



5. O instrumento fornece o ecrã seguinte:



6. Usar os comandos do software TopView para activar a transferência de dados (consultar a ajuda em linha do programa)



## 9. MANUTENÇÃO

### 9.1. GENERALIDADES

Este aparelho é um instrumento de precisão. Durante a utilização e o armazenamento respeitar as recomendações listadas neste manual para evitar possíveis danos ou perigos durante a utilização.

Não utilizar o instrumento em ambientes caracterizados por elevadas taxas de humidade ou temperatura elevada. Não expor directamente à luz do sol.

Desligar sempre o instrumento após a sua utilização. Quando se prevê não utilizá-lo durante um longo período de tempo, retirar as pilhas para evitar por parte destas últimas o derrame de líquidos que possam danificar os circuitos internos do instrumento.

## 9.2. SUBSTITUIÇÃO BATERIAS

Quando no display LCD aparece o símbolo de bateria descarregada " ou quando durante um teste surge, no display, a mensagem "bateria descarregada", substituir as baterias internas



## **ATENÇÃO**

Só técnicos qualificados podem efectuar esta operação. Antes de efectuar esta operação verificar se foram retirados todos os cabos dos terminais de entrada.

- 1. Desligar o instrumento premindo, durante algum tempo, o botão de desligar.
- 2. Retirar os cabos dos terminais de entrada
- 3. Desapertar o parafuso de fixação da cobertura do alojamento das baterias e retirar a referida cobertura.
- 4. Retirar do alojamento todas as baterias e substituí-las por baterias todas novas e todas do tipo correcto (consultar o § 10.5) respeitando as polaridades indicadas.
- 5. Recolocar a cobertura do alojamento das baterias e fixá-la com o respectivo parafuso.
- 6. Não dispersar no ambiente as baterias utilizadas. Usar os respectivos contentores para a sua eliminação.

#### 9.3. LIMPEZA DO INSTRUMENTO

Para a limpeza do instrumento utilizar um pano macio e seco. Nunca usar panos húmidos, solventes, água, etc.

#### 9.4. FIM DE VIDA



**ATENÇÃO**: o símbolo impresso indica que o equipamento, os seus acessórios e as baterias internas devem ser recolhidas separadamente e tratadas de modo correcto.



## 10. ESPECIFICAÇÕES TÉCNICAS

## 10.1. CARACTERÍSTICAS TÉCNICAS DA EFICIÊNCIA DAS INSTALAÇÕES FV

A precisão é indicada como [%leitura + (num. dígitos) \* resolução] a 23°C ± 5°C, <80%HR

#### Tensão CC

| Escalas [V]   | Resolução [V] | Precisão                        |  |
|---------------|---------------|---------------------------------|--|
| 5.0 ÷ 199.9   | 0.1           | (4 00/leiture + 2 dígites)      |  |
| 200.0 ÷ 999.9 | 0.5           | $\pm$ (1.0%leitura + 2 dígitos) |  |

Corrente CC (através de transdutor com pinça externa)

| Escalas [mV] | Resolução [mV] | Precisão                    |
|--------------|----------------|-----------------------------|
| -1100 ÷ -5   | 0.1            | 1/0 F0/loituro 1 0 6m)/)    |
| 5 ÷ 1100     | 0.1            | $\pm$ (0.5%leitura + 0.6mV) |

O valor da corrente é visualizado SEMPRE com sinal positivo : O valor de corrente traduzido em tensão inferior a 5mV é anulado

| FS pinças CC [A] | Resolução [A] | Valor mínimo lido [A] |
|------------------|---------------|-----------------------|
| 1< FS ≤ 10       | 0.001         | 0.05                  |
| 10< FS ≤ 100     | 0.01          | 0.5                   |
| 100< FS ≤ 1000   | 0.1           | 5                     |

Potência CC (Vmis > 150V)

| FS pinça [A]   | Escalas [W]     | Resolução [W] | Precisão                              |
|----------------|-----------------|---------------|---------------------------------------|
| 1< FS ≤ 10     | 0.000k ÷ 9.999k | 0.001k        | $\pm$ (1.5%leitura + 3 dígitos)       |
| 10< FS ≤ 100   | 0.00k ÷ 99.99k  | 0.01k         | (Imis < 10%FS)<br>$\pm$ (1.5%leitura) |
| 100< FS ≤ 1000 | 0.0k ÷ 999.9k   | 0.1k          | (Imis ≥ 10%FS)                        |

Vmis = tensão a que é medida a potência ; Imis = corrente medida

Irradiação (com cela de referência HT304k)

| Escalas [mV] | Resolução [mV] | Precisão               |
|--------------|----------------|------------------------|
| 1 ÷ 40.0     | 0.02           | ±(1.0%leitura + 0.1mV) |

Temperatura (com sonda do tipo PT300N)

| Escalas [°C]  | Re | solução [°C] | Precisão             |
|---------------|----|--------------|----------------------|
| -20.0 ÷ 100.0 |    | 0.1          | ±(1.0%leitura + 1°C) |



## 10.2. CARACTERÍSTICAS TÉCNICAS DA FUNÇÃO IVCK

#### Tensão CC@ OPC

| Escalas [V]   | Resolução [V] | Precisão                        |  |
|---------------|---------------|---------------------------------|--|
| 5.0 ÷ 199.9   | 0.1           | (4.00/loiture + 2 dígitos)      |  |
| 200.0 ÷ 999.9 | 0.5           | $\pm$ (1.0%leitura + 2 dígitos) |  |

Tensão VPN mínima para iniciar o teste :15V

#### Corrente CC @ OPC

| Escalas [A]  | Resolução [A] | Precisão                        |
|--------------|---------------|---------------------------------|
| 0.10 ÷ 15.00 | 0.01          | $\pm$ (1.0%leitura + 2 dígitos) |

#### Tensão CC @ STC

| Escalas [V] | Resolução [V] | Precisão                        |
|-------------|---------------|---------------------------------|
| 5.0 ÷ 199.9 | 0.1           | 1/4 00/leiture + 2 dígitos)     |
| 200 ÷ 999   | 1             | $\pm$ (4.0%leitura + 2 dígitos) |

#### Corrente CC @ STC

| Escalas [A]  | Resolução [A] | Precisão                   |
|--------------|---------------|----------------------------|
| 0.10 ÷ 15.00 | 0.01          | ±(4.0%leitura + 2 dígitos) |

Irradiação (com cela de referência HT304k)

| Escalas [mV] | Resolução [mV] | Precisão               |
|--------------|----------------|------------------------|
| 1 ÷ 40.0     | 0.02           | ±(1.0%leitura + 0.1mV) |

Temperatura (com sonda do tipo PT300N)

| Escalas [°C]  | Resolução [°C] | Precisão             |
|---------------|----------------|----------------------|
| -20.0 ÷ 100.0 | 0.1            | ±(1.0%leitura + 1°C) |



## **ATENÇÃO**

Não utilize o instrumento para ensaios IVCK em módulos fotovoltaicos com uma eficiência >19%. Verifique previamente as características técnicas dos módulos fotovoltaicos antes de realizar os testes para evitar possíveis danos no instrumento.

## CARACTERÍSTICAS TÉCNICAS DA SEGURANÇA ELÉCTRICA

Continuidade dos condutores de protecção (LOWΩ)

| Escalas [Ω] | Resolução [Ω] | Precisão                   |
|-------------|---------------|----------------------------|
| 0.00 ÷ 1.99 | 0.01          |                            |
| 2.0 ÷ 19.9  | 0.1           | ±(2.0%leitura + 2 dígitos) |
| 20 ÷ 199    | 1             |                            |

Corrente de teste >200mA CC até 5Ω (cabos incluídos), resolução 1mA, precisão ±(5.0%leitura + 5 dígitos)

Tensão em vazio  $4 < V_0 < 10V$ 

#### Resistência de isolamento (M $\Omega$ ) – Modo TIMER

| Tensão de teste [V] | Escalas [MΩ] | Resolução [MΩ] | Precisão                        |
|---------------------|--------------|----------------|---------------------------------|
|                     | 0.01 ÷ 1.99  | 0.01           |                                 |
| 250, 500, 1000      | 2.0 ÷ 19.9   | 0.1            | $\pm$ (5.0%leitura + 5 dígitos) |
|                     | 20 ÷ 199     | 1              |                                 |

Tensão em vazio <1.25 x tensão de teste nominal

Corrente de curto-circuito < 15mA (pico) para qualquer tensão de teste

Tensão gerada resolução 1V, precisão ±(5.0%leitura + 5 dígitos) @ Rmis> 0.5% FS

Corrente de medida nominal > 1mA em 1k $\Omega$  @ Vnom

### Resistência de isolamento (M $\Omega$ ) – Modos CAMPO (\*), STRINGA (BATERIA DE PAINÉIS) (\*\*)

| Tensão de teste [V] | Escalas [MΩ] | Resolução [MΩ] | Precisão (***)                   |
|---------------------|--------------|----------------|----------------------------------|
| 250 500 1000        | 0.1 ÷ 1.9    | 0.1            | ±/20 00/ loitura + 5 dígitos)    |
| 250, 500, 1000      | 2 ÷ 99       | 1              | $\pm$ (20.0%leitura + 5 dígitos) |

se VPN >1V a tensão mínima VEP e VEN para o cálculo de Ri(+) e Ri(-) é 1V

(\*) Para modo CAMPO (\*\*) Para modo STRINGA tensão VPN mínima para iniciar o teste :15V

Tensão em vazio <1.25 x tensão de teste nominal Corrente de curto-circuito

< 15mA (pico) para qualquer tensão de teste precisão ±(5.0%leitura + 5 dígitos) @ Rmis> 0.5% FS Tensão gerada resolução 1V,

> 1mA em 1k $\Omega$  @ Vnom Corrente de medição nominal

Adicionar 5 dígitos à precisão se [Max (R+,R-) / Min (R+,R-) ≥ 100] (\*\*\*) Para modo CAMPO:



## 10.4. NORMATIVAS DE REFERÊNCIA

10.4.1. Gerais

Segurança do instrumento: IEC/EN61010-1 Segurança dos acessórios de medida: IEC/EN61010-031

Medições: IEC/EN62446 (IVCK, LOW $\Omega$ , M $\Omega$ )

Isolamento: duplo isolamento

Grau de poluição: 2

Categoria de medida: CAT III 300V para a terra

Máx. 1000VCC entre as entradas P, N, E, C

10.5. CARACTERÍSTICAS GERAIS

Display e memória

Tipo de display: LCD custom, 128x128 pxl, retroiluminado

Dados memorizáveis: máx. 999 Interface PC: óptica/USB

Características do painel rádio

Escalas de frequência: 2.400 ÷ 2.4835GHz

Categoria R&TTE: Classe 1
Potência máx. de transmissão: 30μW
Distância máx. ligação RF: 1m

APPARECCHIO LED DI CLASSE 1M RADIAZIONE LED INVISIBILE 850nm o 890nm, max 1mW IEC /EN 60825-1: 1994 + A1:2002 + A2:2001

Eficiência das instalações FV

Período de integração: 5,10,30,60,120,300,600,900,1800,3600s

Memória SOLAR-02: cerca de 1.5 horas (@ PI = 5s) cerca de 8 gg (@ PI = 600s)

Alimentação

Tipo de baterias:

Indicação de bateria descarregada:

Duração das baterias:

Desligar automático:

6x1.5V alcalinas tipo AA LR06 MN1500

símbolo "\_\_\_\_" mostrado no display

cerca de 120 horas (eficiência FV)

após 5 minutos de não utilização

Características mecânicas

Dimensões (L x A x H) 235 x 165 x 75mm

Peso (baterias incluídas): 1.2kg Proteção mecânica: 1P40

10.6. CONDIÇÕES AMBIENTAIS DE UTILIZAÇÃO

Temperatura de referência: 23°C ± 5°C
Temperatura de utilização: 0°C ÷ 40°C
Humidade relativa admitida: <80%RH
Temperatura de armazenamento: -10°C ÷ 60°C
Humidade de armazenamento: <80%RH
Altitude máx. de utilização: 2000m

Este instrumento está conforme os requisitos da Diretiva Europeia sobre baixa 2014/35/EU (LVD) e da diretiva EMC 2014/30/EU

Este instrumento está conforme os requisitos da Diretiva Europeia 2011/65/EU (RoHS) e da diretiva europeia 2012/19/EU (WEEE)

#### 10.7. ACESSÓRIOS

Consultar a lista anexa



## 11. APÊNDICE - NOÇÕES TEÓRICAS

## 11.1. TESTE DE EFICIÊNCIA DAS INSTALAÇÕES FV

De acordo com o previsto pela normativa vigente, a medição da eficiência CC numa instalação FV é função do tipo de correcção adoptado para compensar os efeitos da temperatura do painel e da relação matemática utilizada para calcular o parâmetro **nDC** (consultar o § 5.2.3).

| Corr. | Valor de Tcel                                                                                                                                              | Relação matemática para cálculo nDC                                                                                                                                                                                                                         |                      | Resultado |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|
| Tenv  | Tcel = Valor da Temp. painéis <b>medida</b> Tcel = Val. da Temp. painéis <b>calculada</b> :  Tcel = Tamb + $\left(NOCT - 20\right) \times \frac{G_p}{800}$ | $Rfv2 = \begin{cases} 1 & (\text{se Tcel} \le 40^{\circ}\text{C}) \\ 1 - (\text{Tcel- } 40) \times \frac{ \gamma }{100} & (\text{se Tcel} > 40^{\circ}\text{C}) \end{cases}$ $nDC = \frac{P_{dc}}{\left[Rfv2 \times \frac{G_p}{G_{STC}} \times P_n\right]}$ | Guia<br>CEI<br>82-25 | OK/NÃO    |
| nDC   | Tcel = Valor da Temperatura painéis medida                                                                                                                 | $nDC = \frac{G_{STC}}{G_p} \times \left[1 + \frac{ \gamma }{100} \times \left(T_{cel} - 25\right)\right] \times \frac{P_{dc}}{P_n}$                                                                                                                         |                      |           |

#### onde:

| Símbolo   | Descrição                                                                                                                                            | Unidade<br>de<br>medida |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| $G_{p}$   | Irradiação medida na superfície dos painéis                                                                                                          | $\left[ W/m^2 \right]$  |
| $G_{STC}$ | Irradiação em condição Standard = 1000                                                                                                               | $\left[ W/m^2 \right]$  |
| $P_n$     | Potência nominal = soma das Pmax dos painéis FV que fazem parte da secção da instalação em exame                                                     | [kW]                    |
| $P_{dc}$  | Potência CC medida na saída do gerador FV                                                                                                            | [kW]                    |
| Rfv2      | Coeficiente correctivo função da Temperatura das Celas FV (Tcel) medida ou calculada de acordo com o tipo de relação de correcção seleccionado       |                         |
| \gamma    | Valor absoluto do coeficiente térmico da Pmax dos painéis FV que fazem parte da secção da instalação em exame.                                       | [%/°C]                  |
| NOCT      | (Normal Operating Cell Temperaturas) = Temperatura a que se conduzem as celas nas condições de referência (800W/m², 20°C, AM=1.5, vel. Do Ar =1m/s). | [%/°C]                  |

As relacções anteriores são válidas nas condições Irradiação > Irradiação min (ver manual de instruções do instrumento MASTER) e de "irradiação estável" isto é, para qualquer amostra detectada, com IP ≤ 1min, a diferença entre os valores máximos e mínimos da irradiação medidos deve ser < 20W/m²

Em geral o resultado poderá ser:

- Impossível efectuar a análise se a irradiação nunca atingiu um valor estável superior ao patamar mínimo configurado ou se não existe nenhum valor válido durante toda a gravação (nDC > 1.15).
- O instrumento fornece como resultado os valores correspondentes ao ponto de máximo atuação.



## 12. ASSISTÊNCIA

## 12.1. CONDIÇÕES DE GARANTIA

Este instrumento está garantido contra qualquer defeito de material e fabrico, em conformidade com as condições gerais de venda. Durante o período da garantia, as partes defeituosas podem ser substituídas, mas ao construtor reserva-se o direito de reparar ou substituir o produto. No caso de o instrumento ser devolvido ao revendedor, o transporte fica a cargo do Cliente. A expedição deverá ser, em qualquer caso, acordada previamente. Anexa à guia de expedição deve ser inserida uma nota explicativa com os motivos do envio do instrumento. Para o transporte utilizar apenas a embalagem original; qualquer dano provocado pela utilização de embalagens não originais será atribuído ao Cliente. O construtor não se responsabilidade por danos causados por pessoas ou objectos.

A garantia não é aplicada nos seguintes casos:

- Reparação e/ou substituição de acessórios e baterias (não cobertos pela garantia).
- Reparações necessárias provocadas por utilização errada do instrumento ou da sua utilização com aparelhagens não compatíveis.
- Reparações necessárias provocadas por embalagem não adequada.
- Reparações necessárias provocadas por intervenções executadas por pessoal não autorizado.
- Modificações efectuadas no instrumento sem autorização expressa do construtor.
- Utilizações não contempladas nas especificações do instrumento ou no manual de instruções.

O conteúdo deste manual não pode ser reproduzido sem autorização expressa do construtor.

Todos os nossos produtos são patenteados e as marcas registadas. O construtor reserva o direito de modificar as especificações e os preços dos produtos, se isso for devido a melhoramentos tecnológicos.

#### 12.2. ASSISTÊNCIA

Se o instrumento não funciona correctamente, antes de contactar o Serviço de Assistência, verificar o estado das baterias e dos cabos e substituí-los se necessário. Se o instrumento continuar a não funcionar correctamente, verificar se o procedimento de utilização do mesmo está conforme o indicado neste manual. No caso de o instrumento ser devolvido ao revendedor, o transporte fica a cargo do Cliente. A expedição deverá ser, em qualquer caso, acordada previamente. Anexa à guia de expedição deve ser inserida uma nota explicativa com os motivos do envio do instrumento. Para o transporte utilizar apenas a embalagem original; qualquer dano provocado pela utilização de embalagens não originais será atribuído ao Cliente.



HT ITALIA SRL

Via della Boaria, 40 48018 – Faenza (RA) – Italy T +39 0546 621002 | F +39 0546 621144 M ht@ht-instruments.com | www.ht-instruments.it

WHERE WE ARE



### HT INSTRUMENTS SL

C/ Legalitat, 89 08024 Barcelona – Spain T +34 93 408 17 77 | F +34 93 408 36 30 M info@htinstruments.es | www.ht-instruments.com/es-es/

### HT INSTRUMENTS GmbH

Am Waldfriedhof 1b D-41352 Korschenbroich – Germany T +49 (0) 2161 564 581 | F +49 (0) 2161 564 583 M info@ht-instruments.de | www.ht-instruments.de