

TABLE DES MATIERES

1. PRE	CAUTIONS ET MESURES DE SECURITE	3
1.1.	Instructions préliminaires	3
1.2.	Pendant l'utilisation	4
1.3.	Après l'utilisation	4
1.4.	Définition de catégorie de mesure (surtension)	4
2. DES	CRIPTION GENERALE	5
2.1.		5
22	Fonctionnement de l'instrument	6
3 PRF	PARATION A L'UTILISATION	0
3.1	Contrôles initiaux	7
3.1.	Alimentation de l'instrument	/
J.Z. 2.2	Annentation de l'instrument	/
3.3.		/
4. NON	IENGLATURE	8
4.1.	Description de l'instrument	8
4.2.	Description des bornes de mesure	8
4.3.	Description du clavier	9
4.4.	Description de l'afficheur	9
4.5.	Page-écran initiale	9
5. MEN	IU GENERAL	.10
5.1.	SET - programmations instrument	. 10
5.1.1.	Langue	10
5.1.2.	Pays	11
5.1.3.	Système électrique	11
5.1.4.	Programmations générales	12
5.1.5.	Fonction Auto Start	12
5.1.6.	Date et heure	12
5.1.7.	Informations	12
5.1.8.		13
6. MOL	DE D'UTILISATION	.14
6.1.	AUTO : Séquence automatique essais (Ra ≑ , RCD, MΩ)	. 14
6.1.1.	Situations anormales	21
6.2.	DMM : Fonction multimètre numérique	. 22
6.3.	RPE: Continuité des conducteurs de protection	. 24
6.3.1.	Mode TMR	26
6.3.2.	Mode > ϕ <	27
6.3.3.	Situations anormales	28
6.4.	Lo Ω : Continuité des conducteurs de protection avec 10A	. 29
6.4.1.	Situations anormales	31
6.5.	$M\Omega$: Mesure Résistance d'Isolation	. 32
6.5.1.	Mode TMR	36
6.5.2.	Mode AUTO	37
6.5.3.	Situations anormales	38
6.6.	RCD: Essai sur interrupteurs différentiels	. 40
6.6.1.		43
6.6.2.	Mode AUTO	44
6.6.3.	Modes x ¹ / ₂ , x1, x5	45
6.6.4.		46
b.b.5.	Mode CCID (Systèmes TN Nation USA)	47
0.0.0.	Situations anormalos	48
0.0.7. 67	Situations anomales	49 E0
U.1. 674	Modes d'essai	. 52
0.7.1. 670	Étalonnage aiguilles-sonde de mesure (ZEPOLOOD)	00
0.7.2. 672	Mode STD - Test rénérique	00
674	Mode Br Cap – Vérifier puissance d'interruption du dispositif de protection	62
6.7.5	TripT – Contrôle de la coordination des protections	64
	· · · · · · · · · · · · · · · · · · ·	

6.7.6	5. Test 🛨 Ra 2 fils - Contrôle de la protection contre les contacts indirects	
6.7.7	Test - Ra 3 fils - Contrôle de la protection contre les contacts indirects	
6.7.8	 Contrôle de la protection contre les contacts indirects (systèmes IT) 	
6.7.9	 Contrôle de la protection contre les contacts indirects (systèmes TT) 	
6.7.1	0. Contrôle de la protection contre les contacts indirects (systèmes TN)	74
6.7.1	1. Situations anormales	
6.8.	LoZ: Impédance ligne/LOOP haute résolution	79
6.9.	1,2,3 : Séquence des phases et concordances	80
6.9.1	Situations anormales	83
6.10.	$\Delta V\%$: Chute de tension sur les lignes	
6.10	1. Situations anormales	
7. STC	OCKAGE DES RESULTATS	90
7.1.	Stockage des mesures	
7.2.	Rappeler les données sur l'écran et effacer la mémoire	
8 COI	NNEXION DE L'INSTRUMENT À UN PC	92
ο. ΟΟΙ ο ΜΔΙ		03
0.1	Aspects généroux	
9.1. 0.2	Aspects generaux	
9.2.	Nettovage de l'instrument	
9.3.	Fin de la durée de vie	
9.4.		
10. SPE	CIFICATIONS TECHNIQUES	
10.1.	Caractéristiques techniques	
10.2.	Normes de référence	
10.3.	Caractéristiques générales	
10.4.	Environnement	
10.4	1. Conditions environnementales d'utilisation	
10.5.	Accessoires	
11. ASS	SISTANCE	99
11.1.	Conditions de garantie	
11.2.	Assistance	
12. ANN	NEXE THEORIQUES	100
12.1.	Continuité des conducteurs de protection	100
12.2.	Résistance d'isolation	
12.2	1. Mesure Indice de polarisation (PI)	
12.2	.2. Rapport d'absorption diélectrique (DAR)	
12.3.	Contrôle de la séparation des circuits	103
12.4.	Test sur interrupteurs différentiels (RCD)	105
12.5.	Contrôle de la puissance d'interruption de protection	
12.6.	Protection contre les contacts indirects en systèmes TN	
12 7	Test = Ra dans les systèmes TN	109
12.7.	Protection contre les contacts indirects en systèmes TT	110
12.0.	Protection contre les contacts indirects en systèmes IT	
12.3.	Contrôle de la coordination des protections L-L L-N et L-PF	
12.10.	Contrôle de la chute de tension sur les lignes de distribution	112 11 <i>1</i>
12.11.	Controle de la critite de tension sur les lignes de distribution	

1. PRECAUTIONS ET MESURES DE SECURITE

L'instrument a été conçu conformément aux normes IEC/EN61557 et IEC/EN61010 concernant les instruments de mesure électroniques. Avant et pendant l'exécution des mesures, respecter scrupuleusement ces indications :

- Ne pas effectuer de mesures de tension ou de courant dans un endroit humide.
- Éviter d'utiliser l'instrument en la présence de gaz ou matériaux explosifs, de combustibles ou dans des endroits poussiéreux.
- Se tenir éloigné du circuit sous test si aucune mesure n'est en cours d'exécution.
- Ne pas toucher de parties métalliques exposées telles que des bornes de mesure inutilisées, des circuits, etc.
- Ne prendre aucune mesure si des anomalies sont détectées dans l'instrument telles que des déformations, des fuites de substances, l'absence d'affichage, etc.
- Prêter une attention particulière lors de la mesure de tensions dépassant 25V dans des endroits particuliers (chantiers, piscines, etc.) et 50V dans des endroits ordinaires, en raison du risque de chocs électriques.
- Utiliser uniquement les accessoires d'origine

Dans ce manuel, on utilisera les symboles suivants :

Attention : suivre les instructions du manuel ; une utilisation incorrecte pourrait endommager l'instrument et ses composants ou créer des situations dangereuses pour l'opérateur.

Danger haute tension : risques de chocs électriques.

Double isolation

Tension ou courant CA

Tension ou courant CC

Référence de terre

Le symbole indique que l'instrument ne doit pas être utilisé dans les systèmes de distribution dont la tension est supérieure à 460 V

1.1. INSTRUCTIONS PRELIMINAIRES

- Cet instrument est conçu pour être utilisé dans les conditions environnementales indiquées au § 10.4.1. Ne pas utiliser dans des conditions environnementales différentes.
- Il peut être utilisé pour les mesures et les tests de vérification de sécurité sur les systèmes électriques. Ne pas intervenir sur des circuits qui dépassent les limites indiquées au § 10.1
- Nous vous invitons à suivre les normes de sécurité visant à protéger l'utilisateur contre des courants dangereux et l'instrument contre une utilisation erronée.
- Seuls les accessoires fournis avec l'instrument garantissent la conformité avec les normes de sécurité. Ils doivent être en bon état et, si nécessaire, remplacés avec des modèles identiques.
- Vérifier que les piles sont insérées correctement.
- Avant de connecter les aiguilles-sondes au circuit examiné, vérifier que la fonction désirée a été sélectionnée

1.2. PENDANT L'UTILISATION

Nous vous prions de lire attentivement les recommandations et instructions suivantes :

Le non-respect des avertissements et/ou instructions pourrait endommager l'instrument et/ou ses composants et mettre en danger l'utilisateur.

ATTENTION

- Débrancher les aiguilles-sondes de mesurage du circuit examiné avant de changer de fonction.
- Lorsque l'instrument est branché au circuit examiné, ne jamais toucher une borne terminale, même si l'instrument n'est pas en cours d'utilisation
- Éviter la mesure de résistance en présence de tensions externes ; même si l'instrument est protégé, une tension excessive pourrait causer des dommages

1.3. APRES L'UTILISATION

Lorsque les mesures sont terminées, éteindre l'instrument en appuyant sur la touche **ON/OFF** pendant quelques secondes. Si on prévoit de ne pas utiliser l'instrument pendant une longue période, retirer les piles et suivre les instructions du § 3.3

1.4. DEFINITION DE CATEGORIE DE MESURE (SURTENSION)

La norme « IEC/EN61010-1 : Prescriptions de sécurité pour les instruments électriques de mesure, le contrôle et l'utilisation en laboratoire, Partie 1 : Prescriptions générales », définit ce qu'on entend par catégorie de mesure, généralement appelée catégorie de surtension. Au § 6.7.4 : Circuits de mesure : les circuits sont divisés dans les catégories de mesure suivantes :

 La Catégorie de mesure IV sert pour les mesures effectuées sur une source d'installation à faible tension.

Par exemple, les appareils électriques et les mesures sur des dispositifs primaires de protection contre surtension et les unités de contrôle d'ondulation.

• La **catégorie de mesure III** sert pour les mesures exécutées sur des installations dans les bâtiments.

Par exemple, les mesures sur des panneaux de distribution, des disjoncteurs, des câblages, y compris les câbles, les barres, les boîtes de jonction, les interrupteurs, les prises d'installations fixes et le matériel destiné à l'emploi industriel et d'autres instruments tels que par exemple les moteurs fixes avec connexion à une installation fixe.

 La Catégorie de mesure II sert pour les mesures exécutées sur les circuits connectés directement à l'installation à basse tension.

Par exemple, les mesures effectuées sur les appareils électroménagers, les outils portatifs et sur des appareils similaires.

 La Catégorie de mesure I sert pour les mesures exécutées sur des circuits n'étant pas directement connectés au RÉSEAU DE DISTRIBUTION.
 Par exemple, les mesures sur des circuits non dérivés du RÉSEAU et dérivés du RÉSEAU, mais avec une protection particulière (interne). Dans le dernier cas mentionné, les tensions transitoires sont variables ; pour cette raison, (OMISSIS) on demande que l'utilisateur connaisse la capacité de résistance transitoire de l'appareil

2. DESCRIPTION GENERALE

2.1. INTRODUCTION

Ce manuel se rapporte aux produits ci-dessous: **EASYTEST** et **COMBI519**. Les caractéristiques des modèles sont listées dans le Tableau 1 ci-dessous. Dans ce manuel, par « instrument » on entend de façon générique le model COMBI519, sauf indication spécifique là où cela est marqué.

Nom	Description mesure	EASYTEST	COMBI519
AUTO	Mesure AUTO de Ra \clubsuit , RCD, M Ω en séquence	\checkmark	\checkmark
DMM	Fonction multimètre (Tension CA, Fréquence)	✓	✓
RPE	Test de continuité des conducteurs de terre, de protection et équipotentiels avec 200mA	\checkmark	✓
LoΩ	Test de continuité des conducteurs de terre, de protection et équipotentiels avec 10A et accessoire en option EQUITEST	✓	✓
MΩ	Mesure de la résistance d'isolement (modes L-PE, N-PE, L-N)	\checkmark	\checkmark
RCD	Test sur les différentiels sur boîtiers standards (STD) AC, A/F, B/B+, DD et CCID Généraux, et Sélectifs jusqu'à 1000mA	√ (A/F, AC)	✓ (A/F, AC, B/B+, DD, CCID)
LOOP	Mesures de la Résistance Globale de Terre (Ra+) et mesure de l'impédance de ligne et de l'anneau de panne (Loop P-N, P-P, P- PE) avec calcul du courant de court-circuit présumé	✓	✓
LoZ	Mesures de l'impédance de ligne et de l'anneau de panne (Loop P-N, P-P, P-PE) à haute résolution avec calcul du courant de court-circuit présumé (avec accessoire en option IMP57)		\checkmark
1,2,3	Indication de la direction cyclique des phases avec la méthode à 1 borne	✓	✓
Δ٧%	Mesure du pourcentage de chute de tension sur les lignes	✓	✓

Tableau 1: Caractéristiques des modèles

2.2. FONCTIONNEMENT DE L'INSTRUMENT

L'instrument peut effectuer les essais suivants :

- **RPE** Continuité des conducteurs de terre, de protection et équipotentiels avec un courant d'essai supérieur à 200mA et une tension à vide comprise entre 4 et 24V
- MΩ Mesure de la résistance d'isolation avec tension continue de test 50V, 100V, 250V, 500V ou 1000V CC
- LOOP Mesure de l'impédance de Ligne/Loop P-N, P-P, P-E avec calcul du courant de court-circuit supposé, résistance globale de terre sans intervention RCD (RA
 ↔), vérification du pouvoir d'interruption des protections magnétothermiques (MCB) et des fusibles, vérification des protections en cas de contacts indirects avec connexion 2 fils et 3 fils
- LoZ Mesure de l'impédance de Ligne/LOOP P-N, P-P, P-E avec calcul du courant de court-circuit supposé même à haute résolution (0.1mΩ) (avec accessoire en option IMP57)
- $\Delta V\%$ Mesure du pourcentage de chute de tension sur les lignes
- LoΩ
 Continuité des conducteurs de terre, de protection et équipotentiels avec courant d'essai supérieur à 10A (avec accessoire en option EQUITEST)
- RCD Essai sur interrupteurs différentiels du type emboîtés (Standard STD) Généraux (G), et Sélectifs (S) du type A/F (∧∧/w), AC (∿), B/B+ (==/==+), DD et CCID (∿, ==) (nation USA) des paramètres suivants : temps d'intervention, courant d'intervention, tension de contact
- AUTO Mesure en séquence automatique des fonctions RA \ddagger , RCD, M Ω avec connexion à 3 fils
- **1,2,3** Indication de la direction cyclique des phases avec la méthode à 1 borne
- DMM Fonction multimètre pour mesurer la tension Phase-Neutre, Phase-Phase ou Phase-PE et fréquence

3. PREPARATION A L'UTILISATION

3.1. CONTROLES INITIAUX

L'instrument a fait l'objet d'un contrôle mécanique et électrique avant d'être expédié. Toutes les précautions possibles ont été prises pour garantir une livraison de l'instrument en bon état. Cependant il est conseillé de le vérifier brièvement pour déterminer les dommages subis pendant le transport. Si vous constatez des anomalies, veuillez contacter votre revendeur immédiatement. Nous conseillons par ailleurs de contrôler que l'emballage contient tous les accessoires indiqués au § 10.5. Dans le cas contraire, contacter le revendeur. S'il s'avère nécessaire de restituer l'instrument, respecter les instructions contenues au § 11.

3.2. ALIMENTATION DE L'INSTRUMENT

L'instrument est alimenté par des piles alcalines 6x1.5V AA LR06 fournies. Le symbole « 🗐 » indique le niveau de charge des piles. Pour remplacer les piles, consulter le § 9.2.

L'instrument est en mesure de garder les données mémorisées même en l'absence de piles.

L'instrument dispose d'une fonction d'arrêt automatique (désactivable) après 10 minutes de non-utilisation.

3.3. CONSERVATION

Pour garantir des mesures précises, après une longue période de stockage dans des conditions environnementales extrêmes, il faut attendre que l'instrument retrouve ses conditions normales (voir § 10.4.1).

4. NOMENCLATURE

4.1. DESCRIPTION DE L'INSTRUMENT

ATTENTION

L'instrument effectue le contrôle de la <u>tension sur PE</u> en comparant la tension sur l'entrée B4 et le potentiel de terre induit sur les côtés de celle-ci au moyen de la main de l'opérateur. Par conséquent, pour effectuer un contrôle de tension correct sur PE, il <u>est nécessaire de maintenir l'instrument sur le côté droit ou sur le côté gauche</u>

4.2. DESCRIPTION DES BORNES DE MESURE

<u>LÉGENDE</u> :

- 1. Protection des mains
- 2. Zone de sécurité

Fig. 3 : Description des bornes de mesure

4.3. DESCRIPTION DU CLAVIER

Le clavier se compose des touches suivantes :

Touche **ON/OFF** pour allumer et éteindre l'instrument

Touche **ESC** pour quitter le menu sélectionné sans confirmer les changements Touche **MENU** pour revenir à tout moment au menu général de l'instrument

Touches ◀ ▲ ▶ ▼ pour déplacer le curseur dans les différents écrans afin de sélectionner les paramètres de programmation

Touche **SAVE/ENTER** pour enregistrer les paramètres internes (SAVE) et sélectionner les fonctions désirées dans le menu (ENTER)

Touche **GO** pour lancer la mesure Touche **STOP** pour mettre fin à la mesure

HELP

Touche **HELP** pour accéder à l'aide en ligne affichant, pour chaque fonction sélectionnée, les connexions possibles entre l'instrument et le système Touche 🏽 (**pression continue**) pour le réglage du rétro-éclairage

4.4. DESCRIPTION DE L'AFFICHEUR

L'afficheur est un module LCD COG, 128x128points. La première ligne de l'afficheur indique le type de mesure active, la date/heure et l'indication sur le niveau de charge de la pile.

4.5. PAGE-ECRAN INITIALE

Lorsque l'instrument est allumé, la page-écran initiale s'affiche pendant quelques secondes. Elle affiche :

- Le modèle de l'instrument
- Le fabricant de l'instrument
- Le numéro de série de l'instrument (SN :)
- La version du Firmware des deux microprocesseurs à l'intérieur de l'instrument (FW et HW)
- La date du dernier étalonnage de l'instrument

COMBI519 HT ITALIA SN : 22100100 HW : 2.00 FW : 2.09 Date d'étalonnage: 15/01/2022

Après quelques instants, l'instrument passe au menu général

5. MENU GENERAL

La touche **HOME**, quel que soit l'état de l'instrument, permet de revenir sur le menu général à partir duquel il est possible de définir les paramètres internes et de sélectionner la mesure désirée.

MENU		15/10 – 18:04	MENU		15/10 – 18:04
AUTO	:	Ra ≑ , RCD, MΩ	LoZ	:	Z haute précision
DMM		Multimètre.	1,2,3	:	Séq. Phases
RPE		Continuité	Δ V %	:	Chute de tens.
LoΩ	:	TestH.Resol.RPE	SET	:	Réglages
MΩ	:	Isolation	MEM	:	Données enreg.
RCD	:	Différentiels	РC	:	Transfert de données
LOOP	:	ZLine Ω ≑ , Isc			
		\blacksquare			▼

Sélectionner en déplaçant le curseur l'une des mesures présentes et confirmer avec la touche **ENTER**. L'instrument affiche la mesure désirée sur l'afficheur.

5.1. SET - PROGRAMMATIONS INSTRUMENT

Déplacer le curseur sur SET à l'aide des touches fléchées	SET 15/10 – 18:04
(▲,▼) et confirmer avec ENTER. L'instrument affiche la fenêtre-vidéo qui permet d'accéder aux programmations internes.	Langue Pays Système électrique
Les programmations sont maintenues même après l'arrêt de 'instrument.	Paràmetres généraux Date et heure Informations Nom de l'opérateur

5.1.1. Langue

Déplacer le curseur sur **Langue** à l'aide des touches fléchées <u>SET 15/10 – 18:04</u> (\blacktriangle , \triangledown) et confirmer avec **ENTER**. L'instrument affiche la page-écran qui vous permet de régler la langue du système. English

Sélectionner l'option souhaitée à l'aide des touches fléchées $(\blacktriangle, \triangledown)$. Appuyer sur la touche **ENTER** pour confirmer ou sur la touche **ESC** pour revenir à la page-écran précédente.

5.1.2. Pays

Déplacer le curseur sur **Pays** à l'aide des touches fléchées $_$ SET (\blacktriangle, \lor) et confirmer avec **ENTER** pour la sélection du pays de référence. Ce choix a des effets sur les mesures de LOOP et Ra \ddagger . Sélectionner l'option souhaitée à l'aide des touches fléchées (\blacktriangle, \lor) . Appuyer sur la touche **ENTER** pour confirmer ou sur la touche **ESC** pour revenir à la page-écran précédente.

5.1.3. Système électrique

Déplacer le curseur sur **Système électrique** à l'aide des touches fléchées (\blacktriangle, ∇) et confirmer avec **ENTER**. Les paramètres suivants peuvent être programmés:

- Vnom → tension nominale Phase-Neutre ou Phase-PE (110V,115V,120V,127V,133V,220V,230V,240V) à utiliser dans le calcul du courant de court-circuit supposé dans la mesure de LOOP/RCD pour les systèmes triphasés L1, L2, L3, N (système L-N-PE) ou la tension nominale entre Phase-Phase dans la mesure de LOOP/RCD pour les systèmes biphasés L1, L2, PE (Système L-L-PE)
- ▶ **Fréquence** → fréquence du système (50 Hz, 60 Hz)
- Système → le type de connexion dans les fonctions RCD et LOOP (L-N-PE ou L-L-PE)
- > **Distribution** → type de système électrique (TT, TN ou IT)
- > V.Contact \rightarrow limite sur la tension de contact (25V, 50V)
- > I RCD \rightarrow type d'affichage du courant d'intervention lors de l'essai à Rampe (Réelle, Nom). Avec l'option "Nom", l'instrument affiche la valeur du courant d'intervention normalisé (c'est-à-dire se référant au courant nominal). Exemple : Pour RCD Type A/F avec Idn=30mA, la valeur effective du courant d'intervention normalisé peut atteindre 30mA. Avec l'option "Réelle", l'instrument affiche la valeur effective du courant d'intervention en appliquant les coefficients indiqués dans les réglementations IEC/EN61008 et IEC/EN61009 (1 414 pour RCD type A/F, 1 pour RCD type AC, 2 pour RCD type B/B+) Exemple : pour RCD Type A/F avec Idn=30mA, la valeur effective du courant d'intervention peut atteindre 30mA * 1 414 = 42mA
- > 30mAx5 → En sélectionnant l'option "250", <u>uniquement</u> pour RCD de 30mA, l'instrument effectue la mesure du temps d'intervention avec <u>multiplicateur x5</u> sur RCD de type A. Avec l'option "150", l'instrument effectue la mesure du temps d'intervention x5 sur RCD de type AC
- Facteur ISC → (<u>seulement pour la Norvège</u>) possibilité de programmer la valeur du facteur ISC (0,01 ÷ 1,00) à utiliser le calcul du courant de court-circuit supposé Sélectionner l'option souhaitée à l'aide des touches fléchées

 $(\blacktriangle, \mathbf{\nabla})$. Appuyer sur la touche **ENTER** pour confirmer ou sur la touche **ESC** pour revenir à la page-écran précédente.

SET 15/10 – 18:04	
Vnom. : 230V Fréquence : 50Hz Systéme : L-N-PE Distribution : TN V. Contact : 50V I RCD : Nom. 30mAx5 : RCD Facteur Isc : 1.00	

: ◀ OFF ▶

OFF
 OFF
 OFF
 OFF
 OFF
 OF
 OF

15/10 - 18:04

Bip Clavier

(RCD/LOOP)

AutoStart

Auto Power Off : ◀ OFF ▶

5.1.4. Programmations générales

Déplacer le curseur sur programmations générales à l'aide SET des touches fléchées (\blacktriangle, ∇) et confirmer avec ENTER. L'instrument montre la fenêtre où il est possible d'activer/désactiver la mise hors tension automatique, le son associé à l'appui des touches et la fonction Auto Start (démarrage automatique) dans les fonctions RCD et LOOP (voir § 5.1.5). Sélectionner l'option souhaitée à l'aide des touches fléchées (\blacktriangle , ∇). Appuyer sur la touche ENTER pour confirmer ou sur la touche ESC pour revenir sur la pageécran précédente

5.1.5. Fonction Auto Start

La fonction AutoStart permet d'activer automatiquement les mesures RCD et LOOP. <u>Pour</u> <u>exécuter correctement la fonction AutoStart, il est NÉCESSAIRE d'effectuer le</u> <u>PREMIER test en appuyant sur la touche GO/STOP sur l'instrument ou sur la touche</u> <u>START sur l'embout à distance</u>. À la fin du premier test, dès que l'instrument reconnaît une tension stable sur les entrées dans la plage de mesure, il effectue le test sans devoir appuyer sur la touche **GO/STOP** ou sur la touche **START** sur l'embout à distance.

5.1.6. Date et heure

Déplacer le curseur sur **Date et Heure** à l'aide des touches s fléchées (\blacktriangle , \blacktriangledown) et confirmer avec **ENTER.** Tout de suite après, l'afficheur visualise la fenêtre-vidéo ci-contre pour permettre de programmer la date/heure. Sélectionner la rubrique "Format" pour programmer le système Européen (format "DD/MM/YY, hh:mm" **EU**) ou Américain (format "MM/DD/YY hh:mm" **USA**)

Sélectionner l'option désirée à l'aide des touches fléchées $(\blacktriangle, \triangledown)$ et $(\blacktriangleleft, \blacktriangleright)$. Appuyer sur la touche **ENTER** pour confirmer ou sur la touche **ESC** pour revenir à la page-écran précédente.

5.1.7. Informations

Déplacer le curseur sur **Informations** à l'aide des touches SET 15/10 – 18:04 fléchées (▲,▼) et confirmer avec ENTER. Tout de suite COMBI519 après, l'afficheur visualise la fenêtre initiale ci-contre

Appuyer sur ESC pour revenir sur le menu général

3	SET 15/10 - 18:04	4
9	F	
r	Format	
£	Mois	· 1 0
ו	Jour	: ◀14 ▶
t	Heure	: ◀ 17. ▶
	Minute	: ┥ 38 🕨
5		
r		
-		

5.1.8. Nom de l'opérateur

Cette option permet d'inclure le nom de l'opérateur qui effectue les mesures avec l'instrument (**max 12 caractères**). Ce nom sera inclus dans les rapports créés à l'aide du logiciel de gestion.

- Utiliser les touches fléchées

 ou
 pour déplacer le s curseur sur le caractère à sélectionner et appuyer sur la touche SAVE/ENTER pour entrer
- Déplacer le curseur sur la position « CANC » et appuyer sur la touche SAVE/ENTER pour effacer le caractère sélectionné
- Déplacer le curseur sur la position « FIN » et appuyer sur la touche SAVE/ENTER pour confirmer le commentaire écrit et revenir à la page-écran précédente.

Э	SAVE 15/10 – 18:04
a	Clavier
r	COMMENTAIRE
è	0 1 2 3 4 5 6 7 8 9 0 () %
	Q W E R T Y U I O P <=> #
r	A S D F G H J K L + - * / &
è	Z X C V B N M . , ; : ! ? _
	ÄÖÜßµÑÇÁÍÓÚÜ¿i
	ÁÈÉÙÇÄËÏÖÜÆØÅ
	CANC FIN

6. MODE D'UTILISATION

6.1. AUTO : SEQUENCE AUTOMATIQUE ESSAIS (RA \ddagger , RCD, M Ω)

Cette fonction permet d'effectuer les mesures suivantes en séquence automatique :

- Résistance globale à la terre sans intervention RCD (Ra+)
- ➤ Temps et courant d'intervention des interrupteurs différentiels emboîtés Généraux de type A/F (^^/w), AC (^) ou B/B+ (==/==+)
- Résistance d'isolation avec tension d'essai 50,100,250,500,1000VCC

Certaines combinaisons des paramètres d'essai peuvent ne pas être disponibles selon les spécifications techniques de l'instrument et les tables RCD (voir § 10.1 - Les cellules vides dans les tables RCD indiquent des situations non disponibles)

ATTENTION

Le contrôle du temps d'intervention d'un interrupteur différentiel comporte l'intervention de la protection elle-même. Vérifier par conséquent qu'en aval de la protection différentielle testée, AUCUNE charge ni AUCUN équipement pouvant être affecté par la mise hors-service de l'installation, ne soit connecté.

 \bigwedge

Débrancher toutes les charges branchées en aval de l'interrupteur différentiel car elles pourraient introduire des courants de fuite additionnels par rapport à ceux que l'instrument fait circuler, en invalidant ainsi les résultats de l'essai.

Fig. 4: Connexion Monophasée L-N-PE via une fiche shuko

Fig. 5: Connexion sur système Monophasé L-N-PE avec câbles et embout à distance

Fig. 7: Connexion sur système Biphasé L-L-PE avec câbles et embout à distance

Systèmes TN

 Appuyer sur la touche MENU, déplacer le curseur sur AUTO à l'aide des touches fléchées (▲, ▼) et confirmer avec ENTER. Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à l'image ci-contre en cas de système électrique L-N-PE monophasé sélectionné (voir § 5.1.3). Pour les systèmes biphasés L-L-PE, les tensions indiquées changent dans VL1-PE et VL1-L2. Sélectionner le pays de référence (voir § 5.1.2), l'option "TN" "25 ou 50V", "50Hz ou 60Hz" et la tension de référence dans les programmations générales de l'instrument (voir § 5.1.3)

- Utiliser les touches fléchées ◀, ► pour sélectionner le paramètre à modifier et les touches fléchées ▲, ▼ pour modifier la valeur du paramètre :
 - ► I∆n → La touche virtuelle permet de régler la valeur nominale du courant d'intervention RCD parmi les valeurs : 6mA, 10mA, 30mA
 - > Type → La touche virtuelle permet de sélectionner le type de RCD parmi les options : A/F (Λ_Λ /w), AC (Λ) ou B/B+ (==/==+)
 - Vtest → Cette touche permet de régler la tension d'essai CC générée lors du test d'isolation. Les valeurs suivantes sont disponibles : 50V, 100V, 250V, 500V, 1000V
 - Lim → Cette touche permet de programmer le seuil minimal pour que la mesure d'isolation soit considérée comme correcte. Les valeurs suivantes sont disponibles : 0.05MΩ, 0.10MΩ, 0.23MΩ, 0.25MΩ, 0.50MΩ, 1.00MΩ, 100MΩ

ATTENTION

- S'assurer de sélectionner la valeur de courant d'intervention RCD correcte. En sélectionnant une valeur supérieure à la valeur nominale du dispositif testé, le RCD serait testé à un courant supérieur au courant correct, ce qui rendrait le résultat fiable
- Le symbole "▶ø◄" indique que les câbles de mesure ou le câble de prise Shuko ont été étalonnés dans la section LOOP (voir § 6.7.2). La fonction AUTO se réfère à cette valeur
- 3. Insérer les connecteurs vert, bleu et noir du câble shuko sur trois bornes dans les bornes d'entrée d'instrument B1, B3 et B4 correspondantes. En alternative, utiliser les câbles individuels et insérer les pinces crocodiles respectives à l'extrémité des câbles. Éventuellement, utiliser l'embout à distance en insérant le connecteur multipolaire dans la borne d'entrée B1. Brancher la fiche Shuko, les pinces crocodiles ou l'embout à distance au secteur électrique conformément aux Fig. 4, Fig. 5, Fig. 6 ou Fig. 7
- 4. Noter la présence des valeurs de tension correctes entre AUTO 15/10 18:04
 L-N et L-PE comme indiqué sur la fenêtre-vidéo ci-contre TN ≥♦

5. Frapper la touche **GO/STOP** ou la touche **START** sur l'embout à distance pour activer la séquence d'essai

Le message "**Mesure...**" apparaît sur l'afficheur pour indiquer que l'instrument effectue la mesure. Pendant toute cette phase, ne pas débrancher les bornes de mesure de l'instrument du système examiné

 6. Le test Ra ÷ est démarré et la fenêtre-vidéo ci-contre AUTO 15/10 - 18:04 s'affiche. Après environ 20s, la mesure Ra ÷ se termine et les valeurs de ZL-N, ZL-PE, IscMin, IFCMin sont affichées sur l'écran.

En cas de résultat **positif** du test $Ra \ddagger (Z_{L-N} \text{ et } Z_{L-N} PE < 199\Omega)$, l'instrument procède à l'exécution de la mesure du temps et du courant d'intervention de l'RCD

AUTO	15/10 – 18	3:04				
ΤN	T N > \$ <					
lsc=1	Isc=1437A ZL-N= 0.16Ω					
Ifc=1277A ZL-PE=0.18Ω Trcd=ms Ircd=mA FRÉQ=50.00Hz Ut=V VL-PE=231V VL-N=232V						
Mesure						
30mA	\sim	500V	1.00MΩ			
IΔn	Туре	Vtest	Lim			

lsc=--- A ZL-N=--- Ω

lfc=--- A ZL-PE=---Ω

J.

Туре

30mA

IΔn

Trcd=---ms Ircd=---mA FRÉQ=50.00Hz Ut=---V VL-PE=231V VL-N=232V

500V

Vtest

1.00MΩ

Lim

7.	Le test RCD est démarré et la fenêtre-vidéo ci-contre s'affiche. Les valeurs du courant et du temps d'intervention sont affichées sur l'écran. En cas de résultat positif du test (valeurs de Trcd et Ircd cohérentes avec celles indiquées au§), 12.4l'instrument procède à l'exécution de la mesure d'isolation entre les conducteurs L-PE, L-N et N-PE	AUTO 15/10 - 18:04 TN ▶ φ ≤ Isc=1437A ZL-N=0.16Ω Ifc=1277A ZL-PE=0.18Ω Trcd=25ms Ircd=27.0mA FRÉQ=50.00Hz Ut=1.5V VL-PE=231V VL-N=232V Mesure 30mA 500V 1.00MΩ
8.	La mesure d'isolation est activée et la fenêtre-vidéo ci- contre s'affiche. Les valeurs de RL-N, RL-PE et RN-PE sont affichées sur l'écran. En cas de résultat positif du test (résistance d'isolation > seuil minimal programmé), l'instrument fournit le message " OK " pour indiquer le résultat global du test comme indiqué sur la fenêtre-vidéo ci-contre	I∆n Type Vtest Lim AUTO 15/10 - 18:04 Im TN ≥ φ ≤ RL-N >999MΩ Vt= 523V RL-PE >999MΩ Vt= 524V RN-PE >999MΩ Vt= 522V FRÉQ=50.00Hz Ut=1.5V VL-PE=0V VL-N=0V
	Appuyer sur les touches (◀, ►) pour afficher les valeurs sur la deuxième page disponible	30mA √ 500V 1.00MΩ I∆n Type Vtest Lim
9.	En cas de résultat négatif du test Ra ÷ (Z _{L-N} et/ou Z _{L-PE} >199Ω), le test auto est automatiquement bloqué et le message " NON OK " s'affiche comme illustré dans la fenêtre-vidéo ci-contre.	AUTO 15/10 - 18:04 TN ≥φ<
10.	En cas de résultat négatif du test RCD (Trcd >300ms ou Ircd > 33.0mA), le test auto est automatiquement bloqué et le message "NON OK" s'affiche comme illustré dans la fenêtre-vidéo ci-contre.	AUTO 15/10 - 18:04 TN >φ<

11. En cas de résultat **négatif** du test **Isolation** (résistance d'isolation < seuil minimal programmé), le test auto est automatiquement bloqué et le message "**NON OK**" s'affiche comme illustré sur la fenêtre-vidéo ci-contre

Э	AUTO	15/10 – 18	3:04	
t	ΤN			>
,,				
	RL-N	>999M	Ω Vt=	523V
	RL-PE	= 0.03 M g	a Vt=	57V
	RN-PE	>999M	Ω Vt=	522V
	FRÉQ	= 50.001	Hz Ut=	=1.5V
	VL-PE	= 0 V	VL·	-N = 0V
		NON	I OK 🕨	
	30mA	\sim	500V	1.00MΩ
	IΛn	Type	Vtest	Lim

12. Appuyer sur la touche **SAVE** pour stocker le résultat du test dans la mémoire de l'instrument (voir § 7.1) ou sur la touche **ESC/MENU** pour quitter la fenêtre-vidéo sans enregistrer et revenir au menu principal

Systèmes TT

 Appuyer sur la touche MENU, déplacer le curseur sur AUTO à l'aide des touches fléchées (▲,▼) et confirmer avec ENTER. Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à l'image ci-contre en cas de système électrique L-N-PE monophasé sélectionné (voir § 5.1.3). Pour les systèmes biphasés L-L-PE, les tensions indiquées changent dans VL1-PE et VL1-L2. Sélectionner le pays de référence (voir § 5.1.2), l'option "TT", "25 ou 50V", "50Hz ou 60Hz" et la tension de référence dans les programmations générales de l'instrument (voir § 5.1.3)

AUTO 15/10 – 18:04					
ΤΤ > φ <					
R A = -	Ω	U t = -	V		
Trcd=	ms	Ircd=-	m A		
FRÉQ VL-PE	FRÉQ=0.00Hz VL-PE=0V VL-N=0V				
30mA	\sim	500V	1.00MΩ		
IΔn	Туре	Vtest	Lim		

- Utiliser les touches fléchées ◀, ► pour sélectionner le paramètre à modifier et les touches fléchées ▲, ▼ pour modifier la valeur du paramètre :
 - ► I∆n → La touche virtuelle permet de régler la valeur nominale du courant d'intervention RCD parmi les valeurs : 6mA, 10mA, 30mA
 - ➤ Type → La touche virtuelle permet de sélectionner le type de RCD parmi les options : A/F (^^/w), AC (^) ou B/B+ (==/==+)
 - > Vtest → Cette touche permet de régler la tension d'essai DC générée lors du test d'isolation. Les valeurs suivantes sont disponibles : 50V, 100V, 250V, 500V, 1000V
 - Lim → Cette touche permet de programmer le seuil minimal pour que la mesure d'isolation soit considérée comme correcte. Les valeurs suivantes sont disponibles : 0.05MΩ, 0.10MΩ, 0.23MΩ, 0.25MΩ, 0.50MΩ, 1.00MΩ, 100MΩ

ATTENTION

- $\underline{\bigwedge}$
- S'assurer de sélectionner la valeur de courant d'intervention RCD correcte. En sélectionnant une valeur supérieure à la valeur nominale du dispositif testé, le RCD serait testé à un courant supérieur au courant correct, ce qui rendrait le résultat fiable
- Le symbole "▶ø◄" indique que les câbles de mesure ou le câble de prise Shuko ont été étalonnés dans la section LOOP (voir § 6.7.2). La fonction AUTO se réfère à cette valeur

- 3. Insérer les connecteurs vert, bleu et noir du câble shuko sur trois bornes dans les bornes d'entrée d'instrument B1, B3 et B4 correspondantes. En alternative, utiliser les câbles individuels et insérer les pinces crocodiles respectives à l'extrémité des câbles. Éventuellement, utiliser l'embout à distance en insérant le connecteur multipolaire dans la borne d'entrée B1. Brancher la fiche Shuko, les pinces crocodiles ou l'embout à distance au secteur électrique conformément aux Fig. 4, Fig. 5, Fig. 6 ou Fig. 7
- 4. Noter la présence des valeurs de tension correctes entre <u>AUTO 15/10 18:04</u>
 L-N et L-PE comme indiqué sur la fenêtre-vidéo ci-contre TT

5. Frapper la touche **GO/STOP** ou la touche **START** sur l'embout à distance pour activer la séquence d'essai.

Le message "**Mesure...**" apparaît sur l'afficheur pour indiquer que l'instrument effectue la mesure. Pendant toute cette phase, ne pas débrancher les bornes de mesure de l'instrument du système examiné

ATTENTION

Le test Ra ÷ est démarré et la fenêtre-vidéo ci-contre A s'affiche. Après environ 20s la mesure Ra ÷ se termine et les valeurs de RA (résistance globale de terre) et Ut (tension de contact) sont affichées sur l'écran.

En cas de résultat **positif** du test **Ra**⁺ (voir § 12.8) l'instrument effectue la mesure du temps et du courant d'intervention de RCD

Э	AUTO ²			
Э	ΤT			>
t	RA=48	8.8 Ω	Ut=	1.5 V
、	Trcd=	ms	lrcd=·	m A
) t	FRÉQ= VL-PE	=50.00 =231V	Hz VL-N=	232V
		Mes	sure	
		~		
	30mA	ν.	500V	1.00MΩ
	IΔn	Туре	Vtest	Lim

 7. Le test RCD est démarré et la fenêtre-vidéo ci-contre s'affiche. Les valeurs du courant et du temps d'intervention sont affichées sur l'écran. En cas de résultat positif du test (valeurs de Trcd et Ircd cohérentes avec celles indiquées au § 12.4) l'instrument procède à l'exécution de la mesure d'isolation entre les conducteurs L-PE, L-N et N-PE

÷	AUTO '	15/10 – 18	3:04	
5	ΤT			> \$ <
t	RA = 48	8.8 Ω	Ut=	1.5 V
)	Trcd=	25 m s	lrcd=2	7.0mA
1	FRÉQ= VL-PE	= 5 0 . 0 0 H = 2 3 1 V	Hz VL-N=	232V
		Mes	ure	
	30mA	\sim	500V	1.00MΩ
	IΔn	Туре	Vtest	Lim

8.

500V

Vtest

N

Type

FRÉQ = 50.00Hz

 \sim

Туре

15/10 - 18:04

Trcd=>300ms Ircd >33.0mA

VL-PE=231V VL-N=232V

🕻 NON OK 🕨

500V

Vtest

N

Type

15/10 - 18:04

Trcd=---ms Ircd=---mA

VL-PE=231V VL-N=232V

▲ NON OK ▶...

500V

Vtest

VL - PE = 0V

30mA

30mA

l Δ n

ТΤ

30mA

l Δ n

RA=48.8 Ω

FRÉQ = 50.00Hz

Vt= 523V

Vt= 524V

Vt = 522V

VL - N = 0V

1.00MΩ

Lim

1.00MΩ

Lim

1.00MΩ

Lim

Ut = 1.5 V

> \$ <

Ut=54.7 V

La mesure d'isolation est activée et la fenêtre-vidéo ci-lauto 15/10 - 18:04 ΤT contre s'affiche. Les valeurs de RL-N, RL-PE et RN-PE sont affichées sur l'écran. >999MΩ RL-N En cas de résultat **positif** du test (résistance d'isolation > RL-PE >999MΩ seuil minimal programmé), l'instrument fournit le message RN-PE >999MΩ FREQ = 50.00Hz

"OK" pour indiquer le résultat global du test comme indiqué sur la fenêtre-vidéo ci-contre

Appuyer sur les touches $(\blacktriangleleft, \blacktriangleright)$ pour afficher les valeurs sur la deuxième page disponible

l Δ n 9. En cas de résultat négatif du test Rat (voir § 12.8), le AUTO test auto est automatiquement bloqué et le message TΤ "NON OK" s'affiche comme illustré sur la fenêtre-vidéo ci-RA=1824 Ω contre

10. En cas de résultat négatif du test RCD (Trcd >300ms ou AUTO Ircd > 33.0mA), le test auto est automatiquement bloqué et le message "NON OK" s'affiche comme illustré dans la fenêtre-vidéo ci-contre

11. En cas de résultat négatif du test Isolation (résistance d'isolation < seuil minimal programmé), le test auto est automatiquement bloqué et le message "NON OK" s'affiche comme illustré sur la fenêtre-vidéo ci-contre

AUTO	15/10 - 18	3:04	
ΤT			>
RL-N RL-PE RN-PE FRÉQ VL-PE	>999M =0.03M >999M =50.00 =0V	Ω Vt= Ω Vt= Ω Vt= Hz Ut= VL-	523V 57V 522V = 1.5V N = 0V
	NON	NOK ►	
	-		
30mA	\sim	500V	1.00MΩ
IΛn	Type	Vtest	Lim

12. Appuyer sur la touche **SAVE** pour stocker le résultat du test dans la mémoire de l'instrument (voir § 7.1) ou sur la touche ESC/MENU pour quitter la fenêtre-vidéo sans enregistrer et revenir au menu principal

15/10 - 18:04

6.1.1. Situations anormales

1. Si une tension L-N ou L-PE supérieure à la limite AUTO maximale (265V) est détectée, l'instrument n'effectue pas ΤN l'essai, et affiche une fenêtre-vidéo semblable à celle $|sc=--A|ZL-N=--\Omega|$ illustrée ci-contre. Contrôler la connexion des câbles de mesure

2. Si une tension L-N ou L-PE inférieure à la limite minimale (100V) est relevée, l'instrument n'effectue pas le tes affichant une fenêtre-vidéo semblable à l'image ci-contre Vérifier que l'installation en ex<amen soit alimentée

3. Si le commutateur entre les bornes de phase et de neutre est détecté, l'instrument n'effectue pas le test et affichune fenêtre-vidéo comme celle ci-contre. Tourner la fich Shuko ou vérifier la connexion des câbles de mesure

4. Si l'instrument détecte un potentiel dangereux sur le conducteur PE, il bloque le test et affiche le message c contre. Vérifier l'efficacité du conducteur PE et du système de terre

le	lfc=	- A ZL	- P E =	-Ω
	Trcd= FRÉQ: VL-PE	= m s = 5 0 . 0 0 = 2 7 0 V	Ircd=- Hz Ut= VL-N=	mA V 272V
	T	ension	> 265	V
	30mA	\sim	500V	1.00MΩ
	IΔn	Туре	Vtest	Lim
le	AUTO	15/10 – 18	8:04	
st, Ə.	IN ISC=	- A ZL	- N =	Ω
	lfc=	- A ZL	- P E =	-Ω
	Trcd= FRÉQ: VL-PE	= m s = 5 0 . 0 0 1 = 1 5 V	Ircd= HzUt=- VL-N=1	mA V 5V
	Т	ension	< 100	V
	30mA	\sim	500V	1.00MΩ
	30mA I∆n	∕ Type	500V Vtest	1.00MΩ Lim
·е	30mA I∆n AUTO	C Type 15/10 – 18	500V Vtest 8:04	1.00MΩ Lim
e ie	30mA I∆n AUTO TN Isc=	✓ Type 15/10 – 18 A ZL	500V Vtest 8:04	1.00MΩ Lim Ω
e ie	30mA I∆n AUTO TN Isc=	√ Type 15/10 – 13 A ZL - A ZL	500V Vtest 8:04 - N =	1.00MΩ Lim Ω - Ω
e e e	30mA I∆n AUTO TN Isc= Ifc= Trcd= FRÉQ: VL-PE	✓ Type 15/10 – 18 - A ZL - A ZL - A ZL - ms = Hz = V	500V Vtest 8:04 - N = - P E = Ir c d = U t = V L - N =	1.00MΩ Lim Ω Ω mA -V V
e e	30mA I∆n AUTO TN Isc= Ifc= Trcd= FRÉQ: VL-PE	Type 15/10 – 13 A ZL M ZL ms = Hz = V Invers	500V Vtest 8:04 - N = - P E = Ir c d = Ut = V L - N = er L - N	1.00MΩ Lim Ω Ω mA -V V
e e	30mA I∆n AUTO TN Isc= Ifc= FRÉQ: VL-PE 30mA	✓ Type 15/10 – 18 - A ZL - A ZL ms = Hz = V Invers	500V Vtest 8:04 - N = - P E = Ut = VL - N = er L - N 500V	1.00MΩ Lim Ω - Ω - m A - V V 1.00MΩ
e e	30mA I∆n AUTO TN Isc= Ifc= Trcd= FRÉQ: VL-PE 30mA I∆n	Type Type 15/10 – 12 - A ZL - A ZL ms Hz V Invers Type	500V Vtest 8:04 - N = - P E = Ir c d = - Ut = - VL - N = er L - N 500V Vtest	1.00MΩ Lim Ω Ω mA -V V 1.00MΩ Lim
e e e	30mA I∆n TN Isc= Ifc= Trcd= FRÉQ VL-PE 30mA I∆n	Type Type 15/10 – 12 A ZL ms ms Hz V Invers Type	500V Vtest 8:04 - N = - P E = Ir c d = U t = V L - N = er L - N 500V Vtest	1.00MΩ Lim Ω Ω mA -V V 1.00MΩ Lim
	30mA I∆n AUTO TN Isc= Ifc= FRÉQ: VL-PE 30mA I∆n AUTO TN	Type Type 15/10 – 12 - A ZL - A ZL ms = Hz = V Invers Type 15/10 – 12	500V Vtest 8:04 - N = - P E = Ir c d = Ut = VL - N = er L - N 500V Vtest 8:04	1.00MΩ Lim Ω Ω mA -V V 1.00MΩ Lim

lsc=	- A ZL	- N =	Ω			
lfc=	- A ZL	- P E =	- Ω			
Trcd= FRÉQ= VL-PE	Trcd=ms lrcd=mA FRÉQ= Hz Ut=V VL-PE= V VL-N= V					
T	Tension sur PE					
	•					
30mA	\sim	500V	1.00MΩ			
IΔn	Туре	Vtest	Lim			

6.2. DMM : FONCTION MULTIMETRE NUMERIQUE

Cette fonction permet de lire les valeurs TRMS en temps réel de Tension P-N, Tension P-PE, Tension N-PE et Fréquence (@ entrées P-N) lorsque l'instrument est connecté à une installation.

Fig. 8 : Connexion de l'instrument par câble avec prise Shuko

Fig. 9: Connexion à l'instrument avec des câbles individuels et une embout à distance

 Appuyer sur la touche MENU, déplacer le curseur sur DM DMM dans le menu principal à l'aide des touches fléchées (▲,▼) et confirmer avec ENTER. Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à l'image ci-contre

DMM 15/10	- 18	3:04	
FRÉQ.	=	0.00	Hz
VL-N	=	0	V
VL-PE	=	0	V
VN-PE	=	0	V
	DMM 15/10 FRÉQ. VL-N VL-PE VN-PE	DMM 15/10 – 18 FRÉQ. = VL-N = VL-PE = VN-PE =	$\begin{array}{rcl} \text{FRÉQ.} & = & 0.00 \\ \text{VL-N} & = & 0 \\ \text{VL-PE} & = & 0 \\ \text{VN-PE} & = & 0 \end{array}$

2. Insérer les connecteurs vert, bleu et noir du câble shuko à trois broches dans les conducteurs d'entrée B1, B3 et B4 correspondants de l'instrument. En alternative, utiliser les câbles individuels et appliquer les pinces crocodiles respectives aux extrémités libres des câbles. Il est possible aussi d'utiliser le câble à distance en insérant son connecteur multipolaire dans le câble d'entrée B1. Brancher la fiche Shuko, les pinces-crocodiles ou l'embout à distance au secteur électrique conformément à la Fig. 8 ou Fig. 9

3. Les valeurs TRMS de tension L-N, tension L-PE, tension N-PE et la fréquence de tension L-N sont affichées sur l'écran.

Appuyer sur la touche **GO/STOP** pour activer/désactiver la fonction "HOLD" afin de fixer la valeur sur l'écran.

DMM 15/10) – 18:04	
FRÉQ.	= 50.00	Hz
VL-N	= 230	V
VL-PE	= 230	V
VN-PE	= 2	V
	HOLD	

ATTENTION

Cette donnée ne peut pas être enregistrée dans la mémoire interne

6.3. RPE: CONTINUITE DES CONDUCTEURS DE PROTECTION

Cette fonction est réalisée selon les normes IEC/EN61557-4, BS7671 17ème édition et permet de mesurer la résistance des conducteurs de protection et équipotentiels.

ATTENTION

 L'instrument peut être utilisé pour les mesures sur des installations en catégorie de surtension CAT IV 300V à la terre et CAT III 415V entre les entrées

- Nous recommandons de tenir la pince crocodile en respectant la zone de sécurité prévue pour la protection des mains (voir § 4.2).
- Vérifier l'absence de tension aux extrémités de l'objet sous test avant d'effectuer la mesure
- Le résultat des mesures peut être influencé par la présence de circuits auxiliaires connectés en parallèle à l'objet sous test ou par l'effet de courants transitoires

Les modes de fonctionnement suivants sont disponibles :

- STD Le test est activé en appuyant sur la touche GO/STOP (ou sur la touche START sur l'embout à distance). <u>Mode recommandé</u>
- TMR L'instrument effectue la mesure avec la possibilité de programmer la durée de l'essai. L'opérateur peut régler un temps suffisamment long pour pouvoir déplacer les conducteurs de protection pendant que l'instrument effectue le test afin de détecter une éventuelle mauvaise connexion. Pendant toute la durée de la mesure, l'instrument émet un signal sonore toutes les 3 secondes. L'opérateur peut toucher les pièces métalliques testées pendant que l'instrument sonne. Si, lors de la mesure, un résultat prend une valeur supérieure au seuil limite fixé, l'instrument émet un signal sonore continu. Appuyer sur la touche GO/STOP ou sur la touche START sur l'embout à distance pour terminer le test
- >
 Compensation de la résistance des câbles utilisés pour les mesures; l'instrument soustrait automatiquement la valeur de la résistance des câbles de la valeur de résistance mesurée. Il est donc nécessaire que cette valeur soit mesurée à chaque changement ou extension des câbles de mesure

ATTENTION

L'essai de continuité est exécuté en générant un courant supérieur à 200mA pour des résistances non supérieures à 5Ω (y compris la résistance des câbles de mesure). Pour des valeurs de résistance supérieures, l'instrument exécute l'essai avec un courant inférieur à 200mA

Fig. 10: Essai de continuité à travers câbles individuels

Fig. 11: Essai de continuité à travers une embout à distance

 Appuyer sur la touche MENU, déplacer le curseur sur RPE RPE à l'aide des touches fléchées (▲,▼) et confirmer avec ENTER. Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à l'image ci-contre

RPE 15/10 – 18:04						
R		=	-	-	-	Ω
lte	st	=	-	-	-	m A
STD	2.00	ΩΩ				Ω
MODE	Lir	n				> \$ <

- 2. Utiliser les touches fléchées ◀, ► pour sélectionner le paramètre à modifier et les touches fléchées ▲, ▼ pour modifier la valeur du paramètre
 - MODE → La touche virtuelle permet de programmer les modes de mesure. Les options suivantes sont possibles : STD, TMR
 - ► Lim → Cette touche virtuelle permet de régler le seuil limite maximale afin de considérer la mesure de continuité correcte. Il est possible de programmer une valeur dans le champ : $0.01\Omega \div 9.99\Omega$ par paliers de 0.01Ω
 - ➤ Time (mode TMR) → Cette touche virtuelle permet de définir la durée de la mesure dans le champ : 3s ÷ 99s par paliers de 3s
- 3. Insérer les connecteurs bleu et noir des câbles individuels dans les bornes d'entrée correspondantes B4 et B1 de l'instrument. Connecter les crocodiles correspondants à l'extrémité libre des câbles. Éventuellement, utiliser l'embout à distance en insérant le connecteur multipolaire dans la borne d'entrée B1
- 4. Si la longueur des câbles fournis est insuffisante pour effectuer la mesure, étendre normalement le câble bleu
- 5. Sélectionner le mode $>\phi<$ pour compenser la résistance des bornes de mesure comme indiqué au § 6.3.2

Vérifier qu'il n'y a pas de tension aux extrémités du conducteur examiné avant de connecter les bornes de mesure.

ATTENTION

6. Brancher la/les aiguilles-sondes au conducteur examiné, conformément aux Fig. 10 ou Fig. 11

ATTENTION

Vérifier toujours, avant chaque mesure, que la valeur de la résistance de compensation se réfère aux câbles réellement utilisés. En cas de doute, répéter la procédure d'étalonnage indiquée au § 6.3.2

7. Frapper la touche **GO/STOP** sur l'instrument ou la touche **START** sur l'embout à distance. L'instrument démarre la mesure

ATTENTION

Le message "**Mesure...**" apparaît sur l'afficheur pour indiquer que l'instrument effectue la mesure. Pendant toute cette phase, ne pas débrancher les bornes de mesure de l'instrument du système examiné

 À la fin de la mesure, l'instrument affiche le message "OK" en cas de résultat positif (valeur inférieure au seuil de limite fixé) ou "NON OK" en cas de résultat négatif (valeur supérieure au seuil de limite fixé)

RPE 15/10 – 18:04						
R	=		0,22	Ω		
ltes	t =		212n	nΑ		
		C	K			
STD	2.00Ω			0.21 Ω		
MODE	Lim			> \$ <		

9. Appuyer sur la touche **SAVE** pour stocker le résultat du test dans la mémoire de l'instrument (voir § 7.1) ou sur la touche **ESC/MENU** pour quitter la fenêtre-vidéo sans enregistrer et revenir au menu principal

6.3.1. Mode TMR

 Utiliser les touches fléchées (▲, ▼) et sélectionner l'option "TMR" dans la section "MODE". L'instrument affiche une fenêtre-vidéo comme celle illustrée ci-contre. Régler la durée de la mesure dans la section "Temps" et suivre les étapes du point 2 au point 6 du § 6.2

 Appuyer sur la touche GO/STOP ou sur la touche START sur l'embout à distance pour activer le test. L'instrument démarre une série de mesures continues pendant toute la durée de la mesure réglée montrant un compte à rebours et un son court toutes les 3 secondes en alternant les messages "Mesure..." et "Attendre..."

EASYTEST - COMBI519

3. À la fin du temps de mesure défini, l'instrument affiche <u>la</u> valeur maximale des mesures partielles effectuées et le message "OK" en cas de résultat positif (valeur inférieure au seuil de limite défini) ou "NON OK" en cas de résultat négatif (valeur supérieure au seuil de limite défini)

 Appuyer sur la touche SAVE pour stocker le résultat du test dans la mémoire de l'instrument (voir § 7.1) ou sur la touche ESC/MENU pour quitter la fenêtre-vidéo sans enregistrer et revenir au menu principal

6.3.2. Mode > ϕ <

Fig. 12: Compensation de la résistance des câbles individuels et de l'embout à distance

- 1. Utiliser les touches \blacktriangleleft , \blacktriangleright pour sélectionner la touche virtuelle > $\phi <$
- 2. Connecter les pinces-crocodiles et/ou la ou les aiguilles-sondes au conducteur examiné conformément à Fig. 12.
- Frapper la touche GO/STOP sur l'instrument ou la touche START sur l'embout à distance. L'instrument démarre la procédure d'étalonnage du câble suivie immédiatement de la vérification de la valeur compensée

ATTENTION

Si le message "**Mesure...**" apparaît sur l'écran cela indique que l'instrument effectue la mesure. Si le message "**Vérifier**" apparaît sur l'écran, l'instrument vérifie la valeur calibrée. Pendant tout le processus, ne pas débrancher les aiguilles-sondes entre elles ni sur l'instrument

4. Dès que l'étalonnage est terminé, si la valeur mesurée est inférieure à 5Ω l'instrument émet un signal sonore double pour indiquer le résultat positif de l'essai et affiche une fenêtre comme celle montrée ci-contre

t	RPE 15	5/10 – 1	8:04			
1	R	=	: -	-	-	Ω
	ltes	t =	-	-	-	m A
	STD	2.00Ω				0.01 Ω
	MODE	Lim				> \$ <

 Pour annuler la valeur de la résistance de compensation des câbles, il est nécessaire d'effectuer une procédure d'étalonnage du câble avec une résistance supérieure à 5Ω sur les aiguilles-sondes (par exemple avec aiguilles-sondes ouvertes)

6.3.3. Situations anormales

1. Si la valeur mesurée dépasse la limite définie, l'instrument émet un long signal sonore et affiche une fenêtre-vidéo semblable à celle illustrée ci-contre

RPE 15/10 – 18:04						
R	=	4	.54	Ω		
Itest	2	212mA				
	NO	ΝO	K			
STD	2.00Ω			0.01 Ω		
MODE	Lim			> \$ <		

ł	RPE 15	5/10 – 1	8:	:04		
ý	R	=		>	199	9Ω
	ltes	t =		-		m A
		NO	N	\circ	K	
	STD	2 000	IN		`	0.01.0
	310	2.0002				0.01 12
	MODE	Lim				> 0<

ż	RPE 15				
) t	R	=	: -		Ω
-	ltes	t =	-		m A
	F	Réinit (Calib	rage	
	STD	2.00Ω			 Ω
	MODE	Lim			> \$ <

RPE 15				
R	=	-		Ω
ltes	t =	-		m A
	Calibre	. pa	s Oł	ζ
STD	2.00Ω			Ω
MODE	Lim			> \$ <

RPE 15				
R	=	: -		Ω
ltes	t =	-		m A
	Vin	> 3'	V	
STD	2.00Ω			Ω
MODE	Lim			> \$<

 Si l'instrument mesure une résistance supérieure à la pleine échelle, il émet un signal sonore prolongé et affiche une fenêtre-vidéo semblable à celle illustrée ci-contre

- 4. En utilisant le mode >φ<, si l'instrument relève sur ses bornes une résistance supérieure à 5Ω, il émet un signal sonore prolongé, remet à zéro la valeur compensée et affiche le fenêtre vidéo ci-contre
- Si l'instrument mesure sur ses bornes une tension supérieure à 3V, il n'effectue pas le test, émet un signal sonore prolongé et affiche une fenêtre-vidéo semblable à celle illustrée ci-contre

6.4. LOΩ: CONTINUITE DES CONDUCTEURS DE PROTECTION AVEC 10A

Cette fonction permet de mesurer la résistance des conducteurs de protection et équipotentiels avec un **courant d'essai >10A** en utilisant l'accessoire en option EQUITEST connecté à l'instrument via le câble C2050. L'accessoire EQUITEST doit être alimenté directement par le secteur sur lequel les mesures sont effectuées. **Pour plus d'informations, se référer au manuel d'utilisation de l'accessoire EQUITEST**

ATTENTION

- L'instrument peut être utilisé pour les mesures sur des installations en catégorie de surtension CAT IV 300V à la terre et CAT III 415V entre les entrées
- Nous recommandons de tenir la pince crocodile en respectant la zone de sécurité prévue pour la protection des mains (voir § 4.2).
- Vérifier l'absence de tension aux extrémités de l'objet sous test avant d'effectuer la mesure

- Les résultats peuvent être influencés par la présence de circuits auxiliaires connectés en parallèle à l'objet de la mesure ou par des courants transitoires
- L'essai de continuité est effectué en fournissant un courant supérieur à 10A si la résistance ne dépasse pas environ 0.7Ω (y compris la résistance des câbles d'essai). La méthode à 4 fils permet d'étendre les aiguilles-sondes sans aucun étalonnage préliminaire
- Appuyer sur la touche MENU, déplacer le curseur sur Lα LoΩ dans le menu principal à l'aide des touches fléchées (▲,▼) et confirmer avec ENTER. Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à l'image ci-contre

ır	LoΩ	οΩ 15/10 – 18:04					
s,	R	=	: -	-	-	Ω	
е	ltest	=	-	-	-	A	
	0 500 0						
	0 500 12			NN.			
	Lim.	INFO	MC	D	Е		

- 2. Utiliser les touches fléchées ◀, ► pour sélectionner le paramètre à modifier et les touches fléchées ▲, ▼ pour modifier la valeur du paramètre :
 - Lim → cette touche virtuelle permet de sélectionner la limite maximale pour considérer la valeur mesurée correcte. Il est possible de programmer une limite dans le champ : 0.003Ω ÷ 0.500Ω par paliers de 0.001
 - ➤ MODE → cette touche virtuelle permet le réglage des modes de mesure. Les options suivantes sont possibles: MAN (la mesure est activée manuellement via la touche GO/STOP), AUTO (la mesure est lancée automatiquement après avoir connecté l'accessoire EQUITEST au câble sous test sans appuyer sur la touche GO/STOP)

EASYTEST - COMBI519

 Brancher l'accessoire EQUITEST à l'alimentation LoΩ principale (230/240V - 50/60Hz) et noter que la LED verte s'allume. Brancher l'accessoire à l'instrument via le câble C2050. Puis, le message message "Conn." s'affiche pour indiquer la reconnaissance correcte de la part de l'instrument

ו	LoΩ	15/10	0 – 18:04	
~ ~	R	=		Ω
r	ltest	=		A
	0.500.0	Conn	ΜΑΝ	
	Lim.	INFO	MODE	

 Utiliser les touches ◀, ▶ pour sélectionner l'élément L "INFO". La fenêtre-vidéo ci-contre s'affiche en indiquant les informations concernant l'accessoire EQUITEST

LoΩ	15/	10 – 1	8:04				
EQUITEST							
SN:		2 ′	06000	23			
FW :		1.00					
HW :		1.00					
Data	Cal	al 30/11/2021					
Statu	it:	С	onnect	é			
:							
0 500 9	Ω	Conn.	MAN				
Lim.		NFO	MODE				

- 5. Brancher les pinces-crocodiles au conducteur à tester (voir le manuel d'utilisation de l'accessoire EQUITEST pour plus de détails)
- 6. Appuyer sur la touche GO/STOP sur l'instrument pour activer la mesure (en cas de sélection du mode MAN) ou effectuer une mesure automatique (en cas de sélection du mode AUTO). À la fin de la mesure, le message "OK" est affiché sur l'écran en cas de résultat positif (valeur inférieure au seuil de limite fixé) ou "NON OK" en cas de résultat négatif (valeur supérieure au seuil de limite fixé)

LoΩ 15	5/10 – 1	8:04					
R	=	: 0	32	8 🤉	2		
ltest	=	1	4.7	6 A			
OK							
0 500 Ω	Conn.	M	AN				
Lim.	INFO	MO	DE				

7. Appuyer sur la touche SAVE pour stocker le résultat du test dans la mémoire de l'instrument (voir § 7.1) ou sur la touche ESC/MENU pour quitter la fenêtre-vidéo sans enregistrer et revenir au menu principal

6.4.1. Situations anormales

 Si l'instrument détecte sur ses bornes une tension LoΩ supérieure à 3V il n'effectue pas le test, il émet un signal sonore prolongé et affiche une fenêtre-vidéo semblable à celle illustrée ci-contre

15/10 – 18:04

=

Accssoire non détecté

MAN MODE

R

ltest

0 500 Ω Conn.

Lim. INFO

= - - - Ω

- - - A

 Si l'instrument ne détecte pas l'accessoire EQUITEST il LoΩ affiche une fenêtre-vidéo semblable à celle illustrée cicontre. Vérifier les connexions avec l'accessoire

3. L'instrument affiche sur l'écran le message "**NON OK**" en cas de résultat positif (valeur inférieure au seuil de limite fixé) mais avec un test courant inférieur à 10A, il affiche une fenêtre-vidéo semblable à celle illustrée ci-contre

LoΩ								
R	=		0.11	9	Ω			
ltest =			8.05A					
NON OK								
0 500Ω	Conn.	ľ	MAN					
Lim.	INFO	M	ODE					

6.5. M Ω : MESURE RESISTANCE D'ISOLATION

Cette fonction est réalisée selon les normes IEC/EN61557-2, BS7671 17ème édition, AS/NZS 3000, AS/NZS 3017 et permet de mesurer la résistance d'isolation entre les conducteurs actifs et entre chaque conducteur actif et la masse. Les modes de fonctionnement suivants sont disponibles :

- MAN Le test est effectué entre les conducteurs L-N, L-PE ou N-PE et a une durée fixe de 3s quand on frappe la touche GO/STOP sur l'instrument (ou START sur l'embout à distance). Procédure conseillée
- TMR le test effectué entre les conducteurs L-PE et a une durée programmable dans le champ 3s ÷ 999s par paliers de 1s quand on frappe la touche GO/STOP sur l'instrument (ou START sur l'embout à distance). Il est possible d'effectuer le test temporisé DAR (Rapport de Décharge Diélectrique) pendant une durée de test >60s et PI (Indice de polarisation) pendant une durée de test >600 s (10 min) (voir § 12.2.1 et § 12.2.2)
- AUTO L'instrument effectue un test de séquence automatique entre les conducteurs L-N, I-PE et N-PE quand on frappe la touche GO/STOP sur l'instrument (ou START sur l'embout à distance

Fig. 13: Isolation entre L-N-PE via des câbles individuels (modes MAN et AUTO)

Fig. 14: Isolation entre L-N-PE avec des câbles individuels et une embout à distance (modes MAN et AUTO)

Fig. 15: Isolation entre L-N-PE via le câble Shuko (modes MAN et AUTO)

Fig. 16: Isolation entre L-PE via câble avec fiche Shuko (mode TMR)

Fig. 17: Isolation entre L-PE via des câbles individuels (mode TMR)

Fig. 18: Isolation entre L-PE avec des câbles individuels et une embout à distance (mode TMR)

Appuyer sur la touche MENU, déplacer le curseur sur MΩ dans le menu principal à l'aide des touches fléchées (▲,▼) et confirmer avec ENTER. Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à l'image ci-contre

MΩ 1	2 15/10 – 18:04						
R	=			-	MΩ		
Vt	=			-	V		
Т	=			- :	S		
MAN	500V	1.00	M۵	2	L-PE		
MODE	Vtest	Lir	n.		FONC		

- 2. Utiliser les touches ◀, ▶pour sélectionner le paramètre à modifier et les touches ▲ ▼ pour modifier la valeur du paramètre :
 - ➤ MODE→ Cette touche permet de programmer le type de test. Les options suivantes sont disponibles : MAN, TMR, AUTO
 - ➤ Vtest → Cette touche permet de sélectionner la tension d'essai DC générée pendant la mesure. Les valeurs suivantes sont disponibles : 50V, 100V, 250V, 500V, 1000V
 - Lim → Cette touche permet de sélectionner le seuil de limite minimal pour considérer la mesure correcte. Les valeurs suivantes sont disponibles : 0.05MΩ, 0.10MΩ, 0.23MΩ, 0.25MΩ, 0.50MΩ, 1.00MΩ, 100MΩ
 - FONC → Cette touche permet de définir le type de connexion L-N, L-PE ou N-PE en mode MAN
 - ➤ Temp → uniquement en mode TMR, cette touche virtuelle permet de définir la durée du test dans le champ : 3s ÷ 999s
- 3. Il est recommandé de programmer la valeur de la tension fournie pendant la mesure et la limite minimale pour considérer la mesure correcte selon les prescriptions de la norme de référence (voir § 12.2)
- 4. Insérer les connecteurs vert et noir des câbles individuels dans les conducteurs d'entrée B1, B3, B4 (modes MAN et AUTO) ou B1, B3 (mode TMR) correspondants de l'instrument. Appliquer les pinces-crocodiles sur les extrémités libres des câbles. Il est possible aussi d'utiliser l'embout à distance en insérant son connecteur multipolaire dans le câble d'entrée B1. Si la longueur des câbles fournis n'est pas suffisante pour que la mesure soit effectuée, allonger le câble vert

ATTENTION

- Débrancher chaque câble non strictement impliqué dans la mesure
- Avant de connecter les aiguilles-sondes, s'assurer qu'il n'y a pas de tension aux extrémités des conducteurs à tester
- Connecter les câbles de mesure et l'embout à distance aux extrémités des conducteurs à tester comme indiqué dans Fig. 13, Fig. 14, Fig. 15, Fig. 16, Fig. 17 ou Fig. 18
- 6. Appuyer sur la touche **GO/STOP** de l'instrument ou sur la touche **START** de l'embout à distance. L'instrument démarrera la mesure

ATTENTION

Si le message "**Mesure**..." apparaît sur l'écran, cela indique que l'instrument effectue le test. Pendant toute cette phase, ne pas débrancher les aiguillessondes de l'instrument des conducteurs testés, car le circuit peut rester affecté par une tension dangereuse en raison des capacités parasites du système

- 7. Quel que soit le mode de fonctionnement sélectionné, l'instrument, à la fin de chaque test, applique une résistance aux conducteurs de sortie pour décharger les capacités parasites dans le circuit
- 8. À la fin de la mesure (durée fixe 3s), l'instrument affiche le message "OK" en cas de résultat positif (valeur supérieure au seuil de limite minimal fixé) ou "NON OK" en cas de résultat négatif (valeur inférieure au seuil de limite minimal fixé). L'indication ">999MΩ" indique le hors-échelle de l'instrument qui, normalement, s'avère être le meilleur résultat possible

ΜΩ 15/10 – 18:04							
R	>	999	N	Ω			
Vt	=	512	V				
т	=	3	s				
	(ЭK					
MAN	500V	1.00MΩ	2	L-PE			
MODE	Vtest	Lim.		FONC			

2.

6.5.1. Mode TMR

1. Avec les touches fléchées (▲,▼) sélectionner l'option "TMR" dans la section "MODE". L'instrument affiche un fenêtre-vidéo semblable à celle illustrée ci-contre. Régler la durée de la mesure dans la section "Temps" et suivre les étapes du point 2 au point 5 du § 6.5

۱	MΩ 1	5/10 – 1	8:04	
ו	R	_	1	MO
r A	V t =	- V	T= -	S
	PI=		DAR=	:
	TMR	500V	1.00MΩ	10s
	MODE	Vtest	Lim.	Temps

Appuyer sur la touche GO/STOP de l'instrument ou sur la	MΩ 1	5/10 – 1	18:04	
touche START de la télécommande. L'instrument démarre la mesure pendant toute la durée définie en affichant le message " Mesure ". L'instrument affiche le message " OK " sur l'écran si le résultat est positif (valeur supérieure au seuil minimal défini) ou " NON OK " si le résultat est pégatif (valeur inférieure à la limite minimal	R V t = 5 2 P I = -	23V 	= 102 T = DAR=	MΩ ÷ 10 s =
définie)			OK	
	TMR	500V	1.00MΩ	10s
	MODE	Vtest	Lim.	Temps

e	MΩ 15	5/10 – 1	8:04	
า	_			
ò	R	=	102 N	IΩ
	Vt = 52	3 V	T =	60 s
	PI =	-	DAR=	1.03
		(ЭK	
	TMR	500V	1.00MΩ	60s
	MODE	Vtest	Lim.	Temps

4.	Avec une durée de mesure ≥ 600s, l'instrument affiche	MΩ	15/10 – 1	18:04	
	l'indication du paramètre PI (indice de polarisation) comme indiqué sur la fenêtre-vidéo ci-contre	Vt=5 PI=	R 523V 1.00	= 102 M T = 0 DAR=	MΩ 600 s =1.03
				OK	
		TMR	500V	1.00MΩ	600s
		MOD	Vtest	Lim.	Temps

5. Appuyer sur la touche SAVE pour stocker le résultat du test dans la mémoire de l'instrument (voir § 7.1) ou sur la touche ESC/MENU pour quitter la fenêtre-vidéo sans enregistrer et revenir au menu principal

3.	Avec une durée de mesure 2 60s, l'instrument affiche
	l'indication du paramètre DAR (Rapport d'Absorption
	Diélectrique) comme indiqué sur la fenêtre-vidéo ci-contre

6.5.2. Mode AUTO

- Avec les touches fléchées (▲,▼) sélectionner l'option « AUTO » dans la section « MODE ». L'instrument affiche un fenêtre-vidéo semblable à celle illustrée cicontre L'instrument effectue le test d'isolation entre : L-N, L-PE et N-PE. Étant donné que certaines charges peuvent encore être connectées entre L-N, l'instrument effectue un essai préliminaire en utilisant 50V comme tension d'essai. <u>Se RL-N è supérieur à 50kΩ</u>, un nouveau test d'isolation est effectué entre L-N en utilisant la valeur Vtest. Enfin, l'instrument effectue le test d'isolation L-PE et N-PE
 Ansuver aur la teuche CO/STOP de l'instrument au our la MΩ 15/10-
- 2. Appuyer sur la touche GO/STOP de l'instrument ou sur la touche START de l'embout à distance. L'instrument démarre la mesure séquentielle automatique de la résistance d'isolation entre L-N, L-PE et N-PE respectivement en affichant le message "Mesure...". L'instrument affiche le message "OK" en cas de résultat positif de chaque test (valeur supérieure au seuil limite minimal fixé) ou "NON OK" en cas de résultat négatif d'au moins un test (valeur inférieure au seuil limite minimal fixé)

۱	MΩ 1	5/10 – 1	8:04	
t				
-	R L - N	=	MΩ Vt	= V
	RL-PE	=	MΩ Vt	= V
t	R N - P E	=	ΜΩ Vt	= V
è				
۱				
t	AUTO	500V	1.00MΩ	
r	MODE	Vtest	Lim.	

а	MΩ	15/10	- 1	8:04			
nt							
a	R L - N	>	999 N	IΩ	V t	= 5 2	3 V
-	RL-PE	=	250M	Ω	V t	= 5 2	5 V
at	R N - P E	>	999 N	IΩ	V t	= 5 2	4 V
е							
u			(ЭK			
al							
	AUTO	50	0V	1.0	$0M\Omega$		
	MODE	Vt	est	Li	im.		

6.5.3. Situations anormales

4.

1. Si l'instrument ne parvient pas à générer la tension MΩ nominale, il émet un long signal sonore pour indiquer l'échec du test et affiche une fenêtre-vidéo semblable à celle illustrée ci-contre

MΩ 15	/10 – 18	3:04	1	
R	=	: (0,29	MΩ
Vt	=	ł	534	V
т	=	;	3	S
	NOI	N C	ЭK	
MAN	500V	1.	.00ΜΩ	L-PE
MODE	Vtest		Lim.	FUNC

=	MΩ	15/10) – 18	3:04			
0 A 2:	RL-N PL- PN- PE	= > >	0.0 M 999 M 999 999 M Ω	1 V t V t V	= = =	15 V 525 V 524 V	
	NO	N OK	-Ve	er. Util	isa	teurs	
							_
	AUTC) 50	V0V	1.00M	Ω		
	MOD	Vt	est	l im			

À la fin de l'essai, si la valeur de la tension d'essai est	MΩ 15	5/10 – 18	3:04	
inférieure à la valeur nominale, l'instrument affiche une fenêtre-vidéo semblable à celle illustrée ci-contre	R	=	0,12	MΩ
	Vt	=	485	V
	Т	=	3	s
	V	test nor	n correcte	9
	MAN	500V	1.00MΩ	L-PE
	MODE	Vtest	Lim.	FUNC

A la fin de l'essai, si la valeur de résistance mesurée est 2. inférieure à la limite fixée, l'instrument émet un long signal sonore pour indiquer le résultat négatif de l'essai et affiche lune fenêtre-vidéo semblable à celle illustrée cicontre

3. En mode AUTO si la mesure d'isolation LN est $<50k\Omega$ = 0.05MΩ tous les tests sont complétés ou si la touche STOPa été appuyée, si RL-PE et RN-PE> Lim et Vt> Vnom l'instrument affiche la fenêtre-vidéo ci-contre Débrancher les charges et continuer le test

5. Si l'instrument mesure sur ses bornes une tension supérieure à 30V, il n'effectue pas le test, émet un signal sonore prolongé et affiche une fenêtre-vidéo semblable à celle illustrée ci-contre

ΜΩ 15/10 – 18:04								
R	=	-	-	-	Ν	Ω		
Vt	=	-	-	-	١	/		
Т	=	-	-	-	s	i		
		0.0	. /					
	vin	>30	V					
MANI	E001/	4.0	~					
MAN	500 V	1.0	UIV	197		L-PE		
MODE	Vtest	L	im			FUNC		

6.6. RCD: ESSAI SUR INTERRUPTEURS DIFFERENTIELS

Cette fonction est réalisée conformément à la norme IEC/EN61557-6, BS7671 17/18ème édition et permet de mesurer le temps/courant d'intervention des RCD emboîtés de type A/F ($\Lambda\Lambda$ /w), AC (Λ), B/B+ (=-/=+), DD et CCID (Λ ,==) (Généraux (G) et Sélectifs (S).

ATTENTION

L'instrument effectue le contrôle de la <u>tension sur PE</u> en comparant la tension en entrée B4 et le potentiel de masse induit du côté de l'instrument par la main de l'utilisateur, de sorte que pour vérifier la tension sur PE, <u>il est</u> <u>obligatoire de tenir l'instrument sur le côté gauche ou sur le droit</u>

ATTENTION

 Certaines combinaisons de paramètres d'essai peuvent ne pas être disponibles conformément aux spécifications techniques de l'instrument et aux tableaux RCD (voir § 10.1 - les cases vides dans les tableaux RCD indiquent des situations non disponibles)

• La RCD-DD n'est pas incluse dans la fonction de séquence AUTO

Les modes de mesure suivants sont disponibles :

- AUTO L'instrument effectue automatiquement la mesure du temps d'intervention avec un courant d'essai égal à la moitié, une ou cinq fois la valeur programmée de courant nominal et avec un courant d'essai en phase avec la demi-onde positive (↑) et négative (↓) de la tension. <u>Mode recommandé</u>
- AUTO L'instrument effectue automatiquement la mesure du temps d'intervention avec un courant d'essai égal à la moitié, une ou cinq fois la valeur de courant nominal programmée, avec un courant d'essai en phase avec la demi-onde positive (↑) et négative (↓) de la tension <u>ainsi qu'un courant réel d'intervention</u>
- x¹⁄₂ L'instrument effectue automatiquement la mesure du temps d'intervention avec un courant d'essai égal à la moitié de la valeur de courant nominal programmée, avec un courant d'essai en phase avec la demi-onde positive (↑) et négative (↓) de la tension de secteur
- x1 L'instrument effectue automatiquement la mesure du temps d'intervention avec un courant d'essai égal à la valeur de courant nominal programmée, avec un courant d'essai en phase avec la demi-onde positive (↑) et négative (↓) de la tension de secteur
- x5 L'instrument effectue automatiquement la mesure du temps d'intervention avec un courant d'essai cinq fois la valeur de courant nominal programmée, avec un courant d'essai en phase avec la demi-onde positive (↑) et négative (↓) de la tension de secteur
- ▲ L'instrument effectue la mesure avec un courant d'essai croissant. Cet essai peut être effectué pour déterminer le courant d'intervention réel du RCD avec la demi-onde positive (↑) et négative (↓) de la tension de secteur

ATTENTION Le contrôle du temps d'intervention d'un interrupteur différentiel comporte

l'intervention de la protection elle-même. Vérifier par conséquent qu'en aval de la RCD testée, AUCUNE charge ni aucun équipement pouvant être affecté par la mise hors-service de l'installation, ne soit connecté. Débrancher toutes les charges branchées en aval de l'interrupteur différentiel car elles pourraient introduire des courants de fuite additionnels par rapport à ceux que l'instrument fait circuler, en invalidant ainsi les résultats de l'essai.

Fig. 19: Connexion pour système Monophasé L-N-PE à travers un câble avec prise Shuko

Fig. 20: Connexion pour système Monophasé L-N-PE avec câbles et embout à distance

Fig. 21: Connexion pour système Triphasé L1-L2-L3-N avec câbles et embout à distance

Fig. 22: Connexion pour système Biphasé L1-L2-PE N avec câbles et embout à distance

Fig. 24: Connexion pour un système Triphasé L1-L2-L3-PE (sans N) avec câbles et embout à distance

 Appuyer sur la touche MENU, déplacer le curseur sur RCD dans le menu principal à l'aide des touches fléchées (▲,▼) et confirmer avec ENTER. Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à l'image ci-contre en cas de système électrique L-N-PE monophasé sélectionné (voir § 5.1.3). Pour les systèmes biphasés L-L-PE, les tensions indiquées changent dans VL1-PE et VL1-L2. Sélectionner le pays (voir § 5.1.2), les options "TN, TN ou IT", "25 ou 50V", "50Hz ou 60Hz" et la tension de référence dans les paramètres généraux de l'instrument (voir § 5.1.3)

- Utiliser les touches ◀, ▶pour sélectionner le paramètre à modifier et les touches ▲ ▼ pour modifier la valeur du paramètre :
 - MODE → La touche virtuelle permet de définir le mode de mesure de l'instrument, qui peut être : AUTO, x¹/₂, x1, x5 J, AUTOJ
 - ➢ I∆n → La touche virtuelle permet de définir la valeur nominale du courant d'intervention RCD, qui peut être : 5mA, 6mA, 10mA, 20mA, 30mA, 100mA, 300mA, 500mA, 650mA, 1000mA
 - Type → La touche virtuelle permet de sélectionner le type de RCD, qui peut être :
 A/F (^^/ww Généraux), A/F (^^/wwS Sélectifs), AC (^ Généraux), AC (^S
 Sélectifs), B/B+ (-----+), DD et CCID^, CCID---- (nation USA) avec polarité positive (↑) ou négative (↓)
 - ➤ Ut → La touche virtuelle permet de programmer l'affichage possible de la valeur de la tension de contact à la fin de la mesure. Options : Ut ou NoUt

- 3. Insérer les connecteurs vert, bleu et noir du câble shuko à trois broches dans les conducteurs d'entrée B3, B4 et B1 correspondants de l'instrument. En alternative, utiliser les câbles individuels et appliquer les pinces-crocodiles aux extrémités libres des câbles. Il est possible aussi d'utiliser l'embout à distance en insérant son connecteur multipolaire dans le câble d'entrée B1. Brancher la fiche Shuko, les pinces-crocodiles ou l'embout à distance au secteur électrique conformément aux Fig. 19, Fig. 20, Fig. 21, Fig. 22, Fig. 23, Fig. 24
- 4. Noter les valeurs de tension correctes entre L-N et L-PE RCD 15/10 18:04 comme indiqué la fenêtre-vidéo ci-contre

6.6.1. Mode AUTO

Appuyer sur la touche GO/STOP de l'instrument, sur la Autoche START de l'embout à distance ou la fonction AutoStart (voir § 5.1.5). L'instrument démarre la mesure x

a	AUTC) 1	5/10 - 1	18:04		
۱	ΤT					
			0 °		180	0
	X 1	38	m s		- m s	
	X 5		m s		- m s	6
	N/1/					
	Χ 1⁄2		- m s		- m s	
	срέ	· • -	E0 00	Ц-	+_	V
		<u> </u>			01=	v
	VL-	N = 2	232V	VL-	PE=	231V
			Mes	ure		
	AUT	0	30mA	<u> </u>	\mathcal{U}	-
	MOL	ЭE	IΔn	Ту	/pe	Ut

ATTENTION

Si le message "**Mesure...**" s'affiche, cela signifie que l'instrument effectue la mesure. Pendant toute cette phase, ne pas débrancher les aiguilles-sondes de l'instrument du secteur

- Le mode AUTO prévoit l'exécution automatique de 6 AUT mesures en séquence :
 - IdN x 1 avec phase 0° (le RCD doit se déclencher, réinitialiser RCD, message "Réadaptation RCD")
 - IdN x 1 avec phase 180° (le RCD doit se déclencher, réinitialiser RCD, message " Réadaptation RCD ")
 - IdN x 5 avec phase 0° (le RCD doit se déclencher, réinitialiser RCD, message " Réadaptation RCD ")
 - IdN x 5 avec phase 180° (le RCD doit se déclencher, réinitialiser RCD, message " Réadaptation RCD ")
 - IdN x¹/₂ avec phase à 0° (le RCD ne doit pas se déclencher)
 - IdN x½ avec phase à 180° (le RCD ne doit pas se déclencher, fin de test)

)	AUTO) 15/	10 – 18:	04	
	ΤT				
		0	0	180°	
	X 1	38m	S	ms	
ı	X 5	m	S	ms	
,	X 1⁄2	m	IS	ms	
	EDÉ	0-5	ററപ	7 t	- V
			0.0011	2 01	- V
,	VL-	N = 2.3	2V V	L - PE = 2	231V
		Réad	dapta	tion R(CD
	AU	ТО	30mA	\sim	
,	MO	DE	IΔn	Туре	Ut

7. En cas de résultat **positif** (tous les temps d'intervention Ausont conformes au § 12.4) de tous les tests effectués en séquence, l'instrument affiche le message "OK" ainsi que la fenêtre-vidéo ci-contre

า	AUTO	D 15	5/10 – 1	8:04	ŀ		
า	ΤN						
si		()°		180°		
	X 1	38n	ns	3	5 m s		
				_	_		
	X 5	22n	ns	2	7 m s		
	V 17	~ ~	0		0.0.0	_	
	X 1⁄2	>99	9 m s	>	999m	S	
	FRE	έ∩-'	50 00	Н7	11t = 0	0.V	
	VI -	N = 2	32V	VI	-PF=2	231V	
	۷L	11 - 2	021	ЭК	1 E = 2	010	
	AU	ТО	30mA	<i>.</i>	\mathbf{A}		
	MO				Type	Ut	
			IΔn		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.	

8. Appuyer sur la touche **SAVE** pour stocker le résultat du test dans la mémoire de l'instrument (voir § 7.1) ou sur la touche **ESC/MENU** pour quitter la fenêtre-vidéo sans enregistrer et revenir au menu principal

6.6.2. Mode AUTO

 Appuyer sur la touche GO/STOP de l'instrument, sur la touche START de l'embout à distance ou la fonction AutoStart (voir § 5.1.5). L'instrument démarre la mesure

a	RCD	15/	10 – 18:0	04 İ		
۱	ΤТ	0 °		180°		
2			mΑ		m A	
4	X 1		m s		m s	
	X 5		m s		m s	
	X 1⁄2		m s		m s	
	FRÉQ.=50.0Hz			Ut = V		
	V L - P	E = 2	231V	VL-N =	= 232V	
			Mesu	ıre		
	AUTC).	30mA	\sim		
	MOE	ЭE	lΔn	Туре	Ut	

ATTENTION

Si le message "**Mesurer...**" s'affiche, cela signifie que l'instrument effectue la mesure. Pendant toute cette phase, ne pas débrancher les aiguilles-sondes de l'instrument du secteur

- Le mode AUTO prévoit l'exécution automatique de 8 R mesures en séquence :
 - I (Rampe) avec phase à 0° (RCD se déclencher, réinitialiser RCD, message "Réadaptation RCD ")
 - A (Rampe) avec phase à 180° (RCD se déclencher, réinitialiser le RCD, message " Réadaptation RCD ")
 - IdN x 1 avec phase à 0° (RCD se déclencher, réinitialiser le RCD, message " Réadaptation RCD ")
 - IdN x 1 avec phase à 180° (RCD se déclencher, réinitialiser le RCD, message "Réadaptation RCD ")
 - IdN x 5 avec phase à 0° (RCD se déclencher, réinitialiser le RCD, message " Réadaptation RCD ")
 - IdN x 5 avec phase à 180° (RCD se déclencher, réinitialiser le RCD, message " Réadaptation RCD ")
 - IdN x¹/₂ avec phase à 0° (RCD ne pas se déclencher)
 - IdN x¹/₂ avec phase à 180° (le RCD ne pas se déclencher, fin de test)

				-	
3	RCD	15/1	0 – 18:0	4	
	ΤT	0 °		180°	
		23	mΑ		mΑ
,	X 1		m s		m s
	X 5		m s		m s
,	X 1⁄2		m s		m s
	FRÉC	Q. = 5 ().0Hz	Ut = -	V
	VL-P	E = 2	31V	VL-N =	232V
,					
	Б	6 a d	ontot	ion DC	

Réadaptation RCD.						
AUTO	30mA	ζ				
MODE	IΔn	Туре	Ut			

7. En cas de résultat **positif** (tous les temps d'intervention sont conformes au § 12.4) de tous les tests effectués en séquence, l'instrument affiche le message "OK" ainsi que la fenêtre-vidéo ci-contre

RCD	15/	10 – 18	:04		
ΤT	0 °		1	80°	
	23	s ma	Ą	23	m A
X 1	23	s me	S	23	m s
X 5	15	i me	S	15	m s
X 1⁄2	>99	9 m 9	s >	999	m s
FRÉ	Q . = 5	0.0Hz	U	t = 1	V
VL-P	E = 2	231V	V	L-N =	= 232V
		0	Κ.		
AUTO)	30mA	1	J	
MOE	ЭE	IΔn	Т	уре	Ut

8. Appuyer sur la touche **SAVE** pour stocker le résultat du test dans la mémoire de l'instrument (voir § 7.1) ou sur la touche **ESC/MENU** pour quitter la fenêtre-vidéo sans enregistrer et revenir au menu principal

6.6.3. Modes x¹/₂, x1, x5

Appuyer sur la touche GO/STOP de l'instrument, sur RCD la touche START de l'embout à distance ou la fonction TT AutoStart (voir § 5.1.5). L'instrument démarre la mesure U

r	RCD 15/10	0 – 18:0	4			
า	TT					
а	Т	=		ms		
	Ut	=		V		
	FRÉQ. = 0 VL-PE=0V	.00Hz	VL-N=	=0V		
	Mesure					
	X1	30mA	ົ			
	MODE	IΔn	Туре	Ut		

ATTENTION

Si le message "**Mesurer...**" s'affiche, cela signifie que l'instrument effectue la mesure. Pendant toute cette phase, ne pas débrancher les aiguillessondes de l'instrument du secteur

6. Lorsque le différentiel intervient et sépare le circuit, si le remps d'intervention tombe dans les limites indiquées au § 12.4, l'instrument émet un double signal sonore qui signale l'affichage du message "OK" et affiche la fenêtre-vidéo ci-contre

è	RCD 15/	10 – 18	:04				
S i	ТТ Т	=	38	m s			
a	Ut	=	1	V			
	FRÉQ. = 50.00Hz VL-PE=231V VL-N=234V						
	OK						
	X1	30mA	$\hat{\mathcal{A}}_{\uparrow}$				
	MODE	IΔn	Туре	Ut			

6.6.4. Mode 📕

La norme définit les temps d'intervention des RCD au courant nominal. Le mode **d** est utilisé pour détecter le temps d'intervention au courant d'intervention (qui pourrait aussi être inférieur à la tension nominale).

Appuyer sur la touche GO/STOP de l'instrument, sur la RCD 15/10 - 18:04
 touche START de l'embout à distance ou la fonction AutoStart (voir § 5.1.5). L'instrument démarre la mesure
 TT
 I = --- mA
 T = --- mS Ut = --- V

FRÉQ. = 50.00Hz VL-PE=231V VL-N=234V Mesure...

	30mA	\mathcal{N}_{\uparrow}	
MODE	IΔn	Туре	Ut

ATTENTION

Si le message "**Mesure...**" s'affiche, cela signifie que l'instrument effectue la mesure. Pendant toute cette phase, ne pas débrancher les aiguilles-sondes de l'instrument du secteur

- Conformément à la norme EN61008, l'essai des RCD sélectifs nécessite un intervalle de 60 secondes entre les essais. Le mode d'n'est donc pas disponible pour les RCD sélectifs, qu'ils soient de type A ou de type AC
- 7. Lorsque le différentiel intervient et sépare le circuit, si le remps d'intervention et le courant d'intervention tombent dans les limites indiquées au § 12.4, l'instrument émet un double signal acoustique qui signale l'affichage du message "OK" et affiche la fenêtre-vidéo ci-contre

е	RCD 15/	10 – 18	:04				
nt et	TT	=	24-	m	A		
u	T = 3	8ms	Ut=	1	V		
	FRÉQ. = VL-PE=2	50.00⊦ 31∨	Hz VL-N:	=23	34V		
	OK						
		30mA	\sim_1				
	MODE	IΔn	Туре		Ut		

6.6.5. Mode DD

La norme IEC62955 définit le temps et le courant d'intervention des **RCD-DD** (**Detecting Devices**) au courant nominal de **6mA**. <u>**Dans ce mode, seules les options x1 et disponibles**.</u>

Appuyer sur la touche GO/STOP de l'instrument, sur RCD 15/1
 la touche START de l'embout à distance ou la fonction TT
 AutoStart (voir § 5.1.5). L'instrument démarre la mesure
 T = ---n

RCD 15/10 – 18:04						
TT	=	m	hΑ			
T = -	m s	Ut=	V			
FRÉQ. = 50.00Hz VL-PE=231V VL-N=234V						
Mesure						
	6mA	DD↑				
MODE	IΔn	Туре	Ut			

ATTENTION

Si le message "**Mesure...**" s'affiche, cela signifie que l'instrument effectue la mesure. Pendant toute cette phase, ne pas débrancher les aiguilles-sondes de l'instrument du secteur

 6. Lorsque le différentiel intervient et sépare le circuit, si RCD le temps d'intervention et le courant d'intervention tombent dans les limites indiquées au § 10.1, l'instrument émet un double signal acoustique qui signale l'affichage du message "OK" et affiche la fenêtre-vidéo ci-contre

RCD 15	5/10 – 1	8:04				
TT	I =	- 4	.5	mA		
T =	219ms	ιL	Jt=	1V		
FRÉQ. = 50.00Hz VL-PE=231V			VL-N=234V			
OK						
	6mA		DD↑			

IΔn

Туре

Ut

MODE

7. Lorsque le différentiel intervient et sépare le circuit, si le temps d'intervention et le courant d'intervention dehors dans les limites indiquées au § 10.1, l'instrument émet un double signal acoustique qui signale l'affichage du message "NON OK" et affiche la fenêtre-vidéo ci-contre

RCD 15/*	10 – 18:0)4			
	=	1.2	mA		
T = 4	62ms	U t =	1 V		
FRÉQ. = 50.00Hz VL-PE=231V VL-N=234V					
NON OK					
	6mA	DD↑			
MODE	IΔn	Туре	Ut		

EASYTEST - COMBI519

6.6.6. Mode CCID (Systèmes TN - Nation USA)

L'instrument permet la mesure de le temps et le courant d'intervention des RCD de type CCID (forme d'onde sinusoïdale) ou CCID ---- (forme d'onde continue) au courant nominal de 5mA ou 20mA. Dans ce mode, seules les options x1 et **disponibles**.

Appuyer sur la touche GO/STOP de l'instrument, sur Relatouche START de l'embout à distance ou la fonction AutoStart (voir § 5.1.5). L'instrument démarre la mesure

r	RCD	15/10 –	18:04				
a	TN						
t	I	=	n	nA			
	T = ·	·ms	Ut= -	V			
	FRÉQ. = (VL1-PE=1	60.00Hz 20V	VL1-L2=240V				
	Mesure						
		20mA	CCID∿↑				
	MODE	IΔn	Туре	Ut			
			•				

ATTENTION

Si le message "**Mesure...**" s'affiche, cela signifie que l'instrument effectue la mesure. Pendant toute cette phase, ne pas débrancher les aiguilles-sondes de l'instrument du secteur

6. Lorsque le différentiel intervient et sépare le circuit, si RCD 15/10 - 18:04
 le temps d'intervention et le courant d'intervention tombent dans les limites indiquées au § 10.1, l'instrument émet un double signal acoustique qui signale l'affichage du message "OK" et affiche la fenêtre-vidéo ci-contre

I COD	10/10	10.0	77			
ΤN	I	=	15	mA		
т	= 219	ms	Ut=	1V		
FRÉQ. = 60.00Hz VL1-PE=120V VL1-L2=240V						
OK						
	2	OmA	CCID	↓ ↑		

IΔn

Туре

Ut

MODE

7. Lorsque le différentiel intervient et sépare le circuit, si le temps d'intervention et le courant d'intervention dehors dans les limites indiquées au § 10.1, l'instrument émet un double signal acoustique qui signale l'affichage du message "NON OK" et affiche la fenêtre-vidéo ci-contre

i	RCD	15/1	0 - 18:0)4		
۱	ΤN					
,		I	=	1.2	m	A
i						
ł	Τ =	= 4	62ms	Ut =	1	V
	- DÉC					
	FREG	2. = (\	50.00Hz	<u>7</u> \/ 4	S	2401/
	VL1-F	'E=1	200	VL1-L	_Z=	=240V
				UK		
			20mA	CCID	1	
	MOD)E	IΔn	Type		Ut

6.6.7. Situations anormales

 Si l'instrument mesure une fréquence supérieure à la <u>RCD</u> limite maximale (63 Hz), il n'effectue pas le test et affiche une fenêtre-vidéo semblable à celle illustrée ci-contre

2.	Si l'instrument mesure une tension L-N ou L-PE inférieure	RCD	15/10 – 18:04
	à la limite minimale (100V), il n'effectue pas le test et affiche une fenêtre-vidéo semblable à celle illustrée ci-	TT T	=
	contre. Vérifier que le système testé soit alimenté	11+	

-						
TT T	=		-	m	S	
Ut	=		-	V		
FRÉQ. = 0.00Hz VL-PE<100V VL-N=<100V						
	Tensio	n <	100	V		
X1	30mA	~	U 1			
MODE	IΔn	Т	ype		Ut	

 Si l'instrument mesure une tension L-N ou L-PE supérieure à la limite maximale (265V), il n'effectue pas le test et affiche une fenêtre-vidéo semblable à celle illustrée ci-contre. Vérifier la connexion des câbles de mesure

RCD 15/10 – 18:04					
TT					
Т	=			m	S
Ut	=			V	
FRÉQ. = 50.00Hz VLPE=>265V VL-N=>265V					
Tension >265V					
X1	30mA	i	∿ĵ		
MODE	IΔn		Туре	9	Ut

4. Si l'instrument mesure une tension dangereuse sur le conducteur PE, il affiche la fenêtre d'avertissement illustrée ci-contre et bloque l'exécution des essais. Vérifier l'efficacité du conducteur PE et du système de terre

RCD 15/10 - 18:04						
TT						
Т	=		- n	ns		
Ut	=		- \	/		
FRÉQ. = 0.00Hz VL-PE=V VL-N=V						
Tension sur PE						
X1	30mA	~	\ C↑			
MODE	IΔn	Т	vpe	Ut		

EASYTEST - COMBI519

5. Si l'instrument détecte que les conducteurs de phase L et le neutre N sont inversés, il n'effectue pas le test et affiche une fenêtre-vidéo semblable à celle illustrée cicontre. Tourner la fiche Shuko ou contrôler la connexion des câbles de mesure

RCD 1	5/10 –	18:0)4		
TT					
Т	=		-	m	s
Ut	=		-	V	
FRÉQ.	= 50.0	0Hz	z		
VL-PE=	= 1V	V	L-N:	=23	31V
Inverser L-N					
X1	30mA	(℃ ↑		
MODE	IΔn	٦			Ut

6.	Si l'instrument détecte que les conducteurs de phase et	RCD	15/10 – 18:04
	PE sont inversés, il n'effectue pas le test et affiche une	TT_	
	fenêtre-vidéo semblable à celle illustrée ci-contre. Vérifier	T	=
	la connexion des câbles de mesure	Ut	=

7.

			-			
TT T	=		-	m	S	
Ut	=		-	V		
FRÉQ. = 50.00Hz VL-PE=231V VL-N=1V						
Inverser L-PE						
X1	30mA	1	V			
MODE	IΔn	Т	ype		Ut	

_

Si l'instrument détecte l'absence du signal à la borne B3	RCD	15/10 – 1	18:04	
(conducteur PE), il affiche la fenêtre d'avertissement illustrée ci-contre et bloque l'exécution des essais	TT T	=	n	ns
	Ut	= -	\	/
	FRÉC VL-PI	Q. = 50.00 E= 114V	0Hz VL-N=2	231V
		PE ma	anquant	
	X1	30mA	\mathcal{N}_{\uparrow}	
	MOD	IΔn	Type	Ut

8.	Si l'instrument détecte l'absence du signal à la borne B4	RCD	15/10 –	18:04	
	(conducteur neutre), il affiche la fenêtre d'avertissement illustrée ci-contre et bloque l'exécution des essais	ТТ	=	r	ns
		Ut	=	\	/
		FRÉG VL-PE	0. = 50.0 Ξ= 231V	0Hz VL-N=´	115V
			N ma	Inquant	
		X1	30mA	\mathcal{N}_{\uparrow}	
		MODE	IΔn	Туре	Ut

9. Si l'instrument détecte l'absence du signal à la borne B1 RC (conducteur de phase), il affiche la fenêtre T d'avertissement illustrée ci-contre et bloque l'exécution des essais

RCD 1	5/10 –	18:0	4		
ΤT					
Т	=		-	ms	
Ut	=		-	V	
FRÉQ.	= 50.0	0Hz			
VL-PE=	= 0V	VI	N=	-0V	
	P ma	Inqu	ant		
X1	30mA	~	U↑		
MODE	IΔn	Т	ype		Ut

10. Si l'instrument détecte une tension de contact nuisible Ut (au-delà de la limite programmée de 25V ou 50V) lors du pré-test initial, il affiche la fenêtre d'avertissement illustrée ci-contre et bloque l'exécution des essais. Vérifier l'efficacité du conducteur PE et du système de terre

KOD I	5/10 -	10.0	4		
TT T	=		- m	ıs	
Ut	=		- V		
FRÉQ. = 50.00Hz VL-PE= 231V VL-N=232V					
Ter	ision c	onta	ict > L	.im	
X1	30mA	~	V↑		
MODE	IΔn	Т	ype	Ut	

RCD 1	5/10 –	18:04	
ΤT			
Т	=	ı <	ms
		999	
Ut	=	۱ ۱	/
		1	
FRÉQ.	= 50.0	0Hz	
VL-PE=	= 231V	VL-N=	232V
	-		
	NO	N OK	
X1	30mA	\mathcal{N}_{\uparrow}	
MODE	IΔn	Type	Ut

е	RCD 1	5/10 –	18:0	4	
nt	ΤT				
et	Т	=		- n	าร
n	Ut	=		- V	,
	FRÉQ. VL-PE=	= 50.0 = 231V	0Hz VL	N=2	32V
	R	externe	e tro	p éle	vé
	X1	30mA	~	U↑	
	MODE	IΔn	T	vpe	Ut

11. Si le RCD n'intervient pas pendant la durée maximum de l'essai, l'instrument émet un long signal sonore qui signale le résultat négatif de l'essai, puis affiche une fenêtre-vidéo semblable à celle illustrée ci-contre. Vérifier que le type d'ensemble RCD correspond au type à tester

12. Si l'instrument détecte sur les bornes d'entrée une Reinfordance externe trop élevée pour fournir le courant T nominal, il affiche la fenêtre-vidéo illustrée ci-contre et bloque le test. Débrancher les charges possibles en aval du RCD avant d'effectuer l'essai

6.7. LOOP : IMPEDANCE LIGNE/LOOP ET REXISTENCE GLOBALE DE TERRE

Cette fonction est effectuée conformément à la norme IEC/EN61557-3, BS7671 17e/18e édition et permet de mesurer l'impédance de ligne, l'impédance de LOOP de défaut et le courant de court-circuit supposé.

ATTENTION

En fonction du système électrique sélectionné (TT, TN ou IT), certains types de connexion et modes de fonctionnement sont désactivés par l'instrument (voir Tableau 2)

Les modes de fonctionnement suivants sont disponibles :

- L-N Mesure standard (STD) de l'impédance de ligne entre le conducteur de phase et le conducteur neutre et calcul du courant de court-circuit de Phase à Neutre supposé pour systèmes L-N-PE et L-L-PE
- L-L Mesure standard (STD) de l'impédance de ligne entre deux conducteurs de phase et calcul du courant de court-circuit de Phase à Neutre supposé pour systèmes L-N-PE et L-L-PE
- L-PE Mesure standard (STD) de l'impédance de LOOP de défaut entre le conducteur de phase et le conducteur de masse et calcul du courant de court-circuit Phase-Terre supposé pour systèmes L-N-PE et L-L-PE
- Ra
 Impédance de LOOP sans provoquer l'intervention des protections dans les systèmes TN (voir § 12.7) et Résistance globale de terre (systèmes TT) avec neutre (3-fils) et sans neutre (2-fils) (voir § 12.8) pour systèmes L-N-PE et L-L-PE
- L1-L2 Mesure standard (STD) de l'impédance de ligne entre deux conducteurs de phase L1 et L2 d'un système Biphasé et calcul du courant de court-circuit supposé pour systèmes L-L-PE
- L1-PE Mesure standard (STD) de l'impédance de LOOP de défaut entre le conducteur de phase et le conducteur de masse d'un système Biphasé et calcul du courant de court-circuit pour systèmes L-L-PE

ATTENTION

L'instrument effectue le contrôle de la <u>tension sur PE</u> en comparant la tension sur l'entrée B4 et le potentiel de terre induit sur les côtés de celle-ci au moyen de la main de l'opérateur. Par conséquent, pour effectuer un contrôle de tension correct sur PE, il <u>est nécessaire de maintenir l'instrument sur le</u> <u>côté droit ou sur le côté gauche</u>

ATTENTION

La mesure de l'impédance de ligne ou de l'impédance de LOOP de défaut comporte la circulation d'un courant maximal selon les spécifications techniques de l'instrument (voir § 10.1). Cela pourrait entraîner l'intervention de protections magnétothermiques ou différentielles à des courants d'intervention plus faibles

Fig. 26: Test L-N/L1-PE pour systèmes Monophasé/Biphasé avec câbles et embout à distance

Fig. 27: Test L-N/L1-PE pour systèmes Triphasés avec câbles individuels et embout à distance

Fig. 28: Test L1-L2 pour systèmes Triphasés avec câbles individuels et embout à distance

Fig. 29: Test L-PE / L1-PE pour systèmes Triphasés (no N) à travers des câbles individuels et embout à distance

Fig. 30: Test L1-PE pour systèmes IT à travers des câbles individuels et embout à distance

Fig. 31: Test L1-PE à 2 fils pour systèmes Monophasés/Biphasés avec prise Shuko

Fig. 32: Test L1-PE à 2 fils pour systèmes Monophasés/Biphasés avec câbles et embout à distance

Fig. 33: Test P-PE à 2 fils pour systèmes triphasés avec câbles individuels et embout à distance

Fig. 34: Test L1-L2 à 3 fils pour systèmes Biphasés avec câbles et embout à distance

6.7.1. Modes d'essai

La protection des lignes électriques est un élément essentiel d'un projet pour assurer une fonctionnalité correcte et éviter les dommages aux personnes ou aux choses. À cette fin, les directives de sécurité exigent que les concepteurs électriques conçoivent le système électrique de la manière suivante :

- 1. La protection contre les courts-circuits, c'est-à-dire la puissance d'interruption du dispositif de protection ne doit pas être inférieure au courant de court-circuit supposé au point où le dispositif est installé
- 2. Protection contre les contacts indirects

Pour vérifier les conditions ci-dessus, l'instrument dispose des fonctions suivantes :

- Ra ÷ (Ut) Contrôle de la protection contre les contacts indirects En fonction du type de système de distribution (TT, TN, IT) défini par l'utilisateur, l'instrument effectue la mesure et vérifie la condition imposée par les consignes. S'il est atteint, l'instrument donne un résultat positif (voir § 12.6, § 12.8 e § 12.9)
 - **Br.Cap** Contrôle de la puissance d'interruption de la protection L'instrument détecte la valeur de l'impédance de ligne en amont du point de mesure, calcule la valeur maximale du courant de court-circuit et donne un résultat positif si la valeur est inférieure à la limite fixée par l'utilisateur (voir § 12.5)
 - TripT Contrôle de coordination des protections L'instrument détecte la valeur de l'impédance de ligne en amont du point de mesure, calcule la valeur minimale du courant de court-circuit et la valeur correspondante du temps de déclenchement (t) du dispositif de protection et fournit un résultat positif si la valeur est inférieure à la limite fixée par l'utilisateur (voir § 12.10)
 - **STD** Test générique

Le tableau suivant résume les mesures qui peuvent être effectuées en fonction du type d'installation (TT, TN et IT), des méthodes sélectionnées et des relations qui définissent les valeurs limites

		TT	TN	IT
	Mode	Conditions pour résultat OK	Conditions pour résultat OK	Conditions pour résultat OK
	STD	Aucun résultat	Aucun résultat	Aucun résultat
L-L	Br.Cap	Isc L-L max < BC Isc L1-L2 max < BC	lsc L-L max < BC lsc L1-L1 max < BC	lsc L-L max < BC lsc L1-L2 max < BC
L1-L2	TripT	(IscL-Lmin 2P) →Tmax → Tmax < Tlim (IscL1-L2min 2P) →Tmax → Tmax < Tlim	(IscL-L min 2P) →Tmax →Tmax < Tlim (IscL1-L2 min 2P) →Tmax →Tmax < Tlim	(IscL-Lmin 2F)→Tmax→Tmax< Tlim (IscL1-L2min 2F)→Tmax→Tmax< Tlim
	Ut			
	STD	Aucun résultat	Aucun résultat	Aucun résultat
	Br.Cap	lsc L-N max < BC	lsc L-N max < BC	lsc L-N max < BC
L-N	TripT	(lsc L-N min) →Tmax → Tmax < Tlim	(Isc L-N min) →Tmax → Tmax < Tlim	(Isc L-N min) →Tmax → Tmax < Tlim
	Ut			
	STD		Aucun résultat	
L-PE	Br.Cap		lsc L-PE max< BC lsc L1-PE max< BC	
L1-PE	TripT		(lpfc L-PE min) →Tmax → Tmax < Tlim (lpfc L1-PE min) →Tmax → Tmax < Tlim	
-	Ut		ZL-PE < ZLimt (UK) ZL1-PE < ZLimt (USA)	Utmeas < Utlim
Ra	Ut 2Fils	Utlim/Ra meas = Isc L-PE MIN > Idn (RCD)	ZLPEmis < ZLIM (UK, AUS/NZ) ZL1PEmis < ZLIM (USA) Ra mis x Idn < Ut lim (autres Pays)	
÷	Ut 3Fils		ZLPEmeas < ZLIM (UK, AUS/NZ) ZL1PEmeas < ZLIM (USA) Ra meas x Idn < Ut lim (autres Pays)	

Tableau 2 : Conditions de résultat OK en fonction des différents paramètres d'essai

Où :

Cellule vide	Mode non disponible pour cette combinaison particulière de systèmes électriques
Isc L-L_Min2P	Courant de court-circuit supposé biphasé minimal L-L (système L-N-PE)
Isc L1-L2_Min2P	Courant de court-circuit supposé biphasé minimal L1-L2 (système L-L-PE)
Isc L-N_Max	Courant de court-circuit supposé maximal L-N (système L-N-PE)
Isc L-N_Min	Courant de court-circuit supposé minimal L-N système L-N-PE)
Isc L-PE_Max	Courant de court-circuit supposé maximal L-PE (système L-N-PE)
Isc L1-PE_Max	Courant de court-circuit supposé biphasé L1-PE maximal (système L-N-PE)
Isc L-PE_Min	Courant de court-circuit supposé minimal L-PE (système L-N-PE)
Isc L1-PE_Min	Courant de court-circuit supposé biphasé minimal L1-PE (système L-L-PE)
BC	Puissance d'interruption du dispositif de protection - kA)
Z Lim	Limite d'impédance maximale admissible selon le type de protection
Tmax	Temps d'intervention maximale du dispositif de protection
Tlim	Délai limite d'extinction des défaillances de la part de la protection programmée par
1 11111	l'utilisateur
Ut meas	Tension de contact mesurée
Ut lim	Tension de contact limite (25V ou 50V)
Ra meas	Résistance globale à la terre mesurée
Idn	Courant d'intervention nominal du dispositif de protection RCD
Ipsc	Courant de court-circuit supposé
Ipfc	Courant de défaut supposé

6.7.2. Étalonnage aiguilles-sonde de mesure (ZEROLOOP)

Pour de meilleurs résultats, il est <u>recommandé</u> d'étalonner préalablement les fils de test ou le câble de prise Shuko en utilisant l'accessoire **ZEROLOOP** avant d'effectuer le test. De cette manière, l'instrument soustrait automatiquement la résistance des câbles d'essai, fournissant le résultat réel sur l'affichage. À titre d'exemple, la procédure pour le mode LOOP STD générique est décrite ci-après et peut être étendue à tous les autres cas.

Appuyer sur la touche MENU, déplacer le curseur sur LOOP 15/10 – 18:04
 LOOP dans le menu principal à l'aide des touches fléchées (▲,▼) et confirmer avec ENTER. Sélectionner la fonction "CAL" Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à l'image ci-contre

2. Insérer l'accessoire métallique **ZEROLOOP** dans les trois connecteurs banane des câbles de mesure (L-N-PE) ou les connecteurs métalliques de la fiche Shuko (différemment selon le pays d'utilisation) comme indiqué dans le Tableau 3 ci-dessous

			محص			d o	
Câbles mesure	Fiche SHUKO	Fiche Royaume Uni	Fiche ITA	Fiche SWI	Fiche DEN	Fiche AUS/CHN	Fiche ÉTATS-UNIS

Tableau 3 : Connexion accessoire ZEROLOOP

Appuyer sur la touche GO/STOP pour démarrer LOOP 15/10 - 18:04
 l'étalonnage. Les champs RL, RN et RPE montrent pendant quelques secondes la résistance des aiguilles-sondes. Cette valeur sera automatiquement soustraite de l'instrument à la fin de la mesure de LOOP
 Appuyer sur la touche GO/STOP pour démarrer LOOP 15/10 - 18:04
 TN
 RL = 0 05
 RN = 1
 RP = 0 01
 F 3

L'instrument affiche le symbole " $\blacktriangleright \emptyset \blacktriangleleft$ " pour indiquer le résultat positif de l'étalonnage des câbles de mesure (**Rcal** <1 Ω) et affiche la fenêtre-vidéo ci-contre

Retourner sur la page principale de mesure. Noter le _{CAL} symbole "▶ø◀" qui indique l'étalonnage correct des FONC aiguilles-sondes et procéder aux mesures décrites dans les paragraphes suivants

-WMFT

 La valeur de la résistance des aiguilles/fiche Shuko est LOO maintenue par l'instrument jusqu'à l'opération de TN réinitialisation effectuée par l'utilisateur (par exemple pour l'insertion de câbles de longueurs différentes).

Pour réinitialiser la valeur d'étalonnage enregistrée, retirer l'accessoire **ZEROLOOP** et appuyer sur la touche **GO/STOP**. Le symbole "►Ø◀" est supprimé et la fenêtrevidéo ci-contre s'affiche

LOOP 15	/10 -	- 1	8:0)4		
ΤN						
RL	=	-	-	-	Ω	
RN	=	-	-	-	Ω	
RP	=	-	-	-	Ω	
E						
FRÉQ. =	0.00)H:	z			
VL-PE=0	V		VL	N	=0V	
Reset Calib.						
CAL						
FONC						

- - -

А

Ο

VL-N=0V

6.7.3. Mode STD - Test générique

Ce mode effectue la mesure d'impédance et le calcul du courant de court-circuit potentiel sans appliquer d'évaluation. Par conséquent, à la fin de l'essai, aucun résultat n'est donné par l'instrument.

- Appuyer sur la touche MENU, déplacer le curseur sur LOOP 15/10 18:04 1. LOOP dans le menu principal à l'aide des touches ΤN lpfc fléchées (\blacktriangle, ∇) et confirmer avec **ENTER**. Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à ZL-PE = - - l'image ci-contre en cas de système électrique L-N-PE monophasé sélectionné (voir § 5.1.3). Pour les FRÉQ. = 0.00Hz systèmes biphasés L-L-PÈ, les tensions indiquées VL-PE=0V changent dans VL1-PE et VL1-L2. Sélectionner le pays "Europe" (voir § 5.1.2), les options "TN, TN ou IT", "25 ou 50V", "50Hz ou 60Hz", le système L-PE STD MODE « L-N-PE » ou « L-L-PE » et la tension de référence dans FONC les réglages généraux de l'instrument (voir § 5.1.3).
- 2. Utiliser les touches ◀, ▶pour sélectionner le paramètre à modifier et les touches ▲, ▼ pour modifier la valeur du paramètre :
 - \succ FONC \rightarrow La touche virtuelle permet de définir le mode de mesure de l'instrument, qui peut être : L-N, L-L ou L-PE (systèmes Monophasés/Triphasés) ou L1-PE, L1-L2 (systèmes Biphasés)
 - \rightarrow MODE \rightarrow La touche virtuelle permet de définir le mode de fonctionnement de l'instrument. Sélectionner l'option STD
- Si possible, débrancher toutes les charges connectées en aval du point mesuré car 3. l'impédance de ces fonctions pourrait fausser les résultats de l'essai. Effectuer l'étalonnage préliminaire des aiguilles-sondes comme décrit au § 6.7.2
- Insérer les connecteurs vert, bleu et noir du câble shuko à trois broches dans les 4. conducteurs d'entrée B3, B4 et B1 correspondants de l'instrument. En alternative, utiliser les câbles individuels et appliquer les pinces crocodiles respectives aux extrémités libres des câbles. Il est possible aussi d'utiliser l'embout à distance en insérant son connecteur multipolaire dans le câble d'entrée B1. Brancher la prise Shuko, les pinces-crocodiles ou l'embout à distance au secteur électrique conformément aux Fig. 25, Fig. 26, Fig. 27, Fig. 28, Fig. 29, Fig. 31, Fig. 32, Fig. 33 ou Fig. 34
- Noter la présence des valeurs de tension correctes entre LOOP 15/10 18:04 5. ►Ø◀ L-N et L-PE correspondant aux sélections effectuées TN А dans la phase initiale comme indiqué sur la fenêtre-vidéo ci-contre.

ZL-PE	=	(2
FRÉQ. VL-PE=	= 50.00 231V	Hz VL-N=2	232V
L-PE	STD		
FONC	MODE		

7.

6. Appuyer sur la touche GO/STOP de l'instrument, sur la touche START de l'embout à distance ou la fonction AutoStart (voir § 5.1.5). L'instrument démarre la mesure et le message "Mesure ... " s'affiche

Pendant toute cette phase, ne pas débrancher les câbles de mesure de l'instrument du système testé. La pageécran suivante s'affiche

LOOP 15	/10 –	· 18	:04		
TN Ipfc	=	-		A ►Ø◄	
ZL-PE	=	-		Ω	
FRÉQ. = 50.00Hz VL-PE=231V VL-N=232V					
Mesure					

STD

L-PE

	FONC	MODE
La valeur présumée du courant de court-circuit (Ipfc) est	RCD 1	5/10 - 18
affichée en haut de l'écran, tandis que la partie basse	ΤN	

Le courant de court-circuit supposé standard (Std) (Isc) est calculé à l'aide des formules suivantes :

$$I_{SCL-PE} = \frac{U_{NOM}}{Z_{L-PE}} \qquad I_{SCL-N} = \frac{U_{NOM}}{Z_{L-N}} \qquad I_{SCL-L} = \frac{\sqrt{3} U_{NOM}}{Z_{L-L}}$$

RCD 1	5/10 – 1	8:04				
TN Ipfc	=	163	►Ø◀ A			
ZL-PE	=	1.41	Ω			
FRÉQ. = 50.00Hz VL-PE=231V VL-N=232V						
L-PE	STD					
FONC	MODE					

Z_{MEAS} = Impédance LOOP L-L,L-N,L-PE mesurée U_{NOM} = tension nominale (en fonction du système)

affiche l'impédance ZL-PE de Ligne/LOOP

6.7.4. Mode Br.Cap – Vérifier puissance d'interruption du dispositif de protection

 Appuyer sur la touche MENU, déplacer le curseur sur LOOP dans le menu principal à l'aide des touches fléchées (▲,▼) et confirmer avec ENTER. Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à l'image ci-contre en cas de système électrique L-N-PE monophasé sélectionné (voir § 5.1.3). Pour les systèmes biphasés L-L-PE, les tensions indiquées changent dans VL1-PE et VL1-L2. Sélectionner le pays "Europe" (voir § 5.1.2), les options "TN, TN ou IT", "25 ou 50V", "50Hz ou 60Hz" et la tension de référence dans les réglages généraux de l'instrument (voir § 5.1.3)

LOOP	15/10 – 1	8:04	
ΤN			
I^{\max}	=		А
f psc			_
ZL-L	=		Ω
FRÉQ. VL-PE=	= 50.00 :0V	Hz VL-L=	=0V
L-L	Br.Cap	15kA	
FONC	MODE	Lim	

- 2. Utiliser les touches ◀, ▶pour sélectionner le paramètre à modifier et les touches ▲, ▼ pour modifier la valeur du paramètre :
 - FONC → La touche virtuelle permet de définir le mode de mesure de l'instrument, qui peut être : L-N, L-L ou L-PE (systèmes Monophasés/Triphasés) ou L1-PE, L1-L2 (systèmes Biphasés)
 - ➤ MODE → la touche virtuelle permet de définir le mode de fonctionnement de l'instrument. Sélectionner l'option Br.Cap
 - ► Lim→ la touche virtuelle permet de définir le courant d'intervention maximal exprimé en "kA" que la protection doit interrompre dans le champ : 0.1kA ÷ 999kA
- 3. Si possible, débrancher toutes les charges connectées en aval du point mesuré car l'impédance de ces fonctions pourrait fausser les résultats de l'essai. <u>Effectuer</u> <u>l'étalonnage préliminaire des aiguilles-sondes comme décrit au § 6.7.2</u>
- 4. Insérer les connecteurs vert, bleu et noir du câble shuko à trois broches dans les conducteurs d'entrée B3, B4 et B1 correspondants de l'instrument. En alternative, utiliser les câbles individuels et appliquer les pinces crocodiles respectives aux extrémités libres des câbles. Il est possible aussi d'utiliser l'embout à distance en insérant son connecteur multipolaire dans le câble d'entrée B1. Brancher la prise Shuko, les pinces-crocodiles ou l'embout à distance au secteur électrique conformément auxFig. 25, Fig. 26, Fig. 27, Fig. 28, Fig. 29, Fig. 31, Fig. 32, Fig. 33 ou Fig. 34

5.	Noter la présence des valeurs de tension correctes entre	LOOP	15/10 - 1	18:04	
	L-L et L-PE correspondant aux sélections effectuées	ΤN			^
	dans la phase initiale comme indiqué sur la fenêtre-vidéo	I_{psc}^{\max}	=		А
	ci-contre	ZL-L	=		Ω

FRÉQ. = 50.00Hz VL-PE=223V V ►Ø∢

VL-L=387V

15kA

Lim

8.

6. Appuyer sur la touche GO/STOP de l'instrument, sur la LOOP 15/10 – 18:04 ►Ø◀ touche START de l'embout à distance ou la fonction TN А I^{\max} AutoStart (voir § 5.1.5). L'instrument démarre la mesure psc et le message "Mesure ... " s'affiche. Ω ZL-L - - -= Pendant toute cette phase, ne pas débrancher les câbles FRÉQ. = 50.00Hz de mesure de l'instrument du système testé. La page-VL-L=387V VL-PE=223V écran suivante s'affiche Mesure... 15kA L-L Br.Cap FONC MODE Lim 7. En cas de résultat **positif** (IpscMAX<Lim) l'afficheur LOOP 15/10 - 18:04 ΤN ►Ø◀ visualise le message de résultat "OK" I^{max} 3019 A = psc 0.16Ω ZL-L = FRÉQ. = 50.00Hz VL-L=387V VL-PE=223V OK 6.0kA L-L Br.Cap FONC MODE Lim

En cas de résultat négatif (IpscMAX>Lim) l'afficheur	LOOP	15/10 – ⁻	18:04	
visualise le message de résultat "NON OK"	TN	=	7236	A ►Ø◀
	I_{psc}^{max}			
	ZL-L	=	0.07	Ω
	FRÉO	- 50.00)H 7	
		- 00.00 - 222\/	VL-L=	387V
	VL-FE=	=2230		
		NO	NÜK	
	L-L	Br.Cap	6.0kA	
	FONC	MODE	Lim	

6.7.5. TripT – Contrôle de la coordination des protections

 Appuyer sur la touche MENU, déplacer le curseur sur LOOP dans le menu principal à l'aide des touches fléchées (▲,▼) et confirmer avec ENTER. Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à l'image ci-contre en cas de système électrique L-N-PE monophasé sélectionné (voir § 5.1.3). Pour les systèmes biphasés L-L-PE, les tensions indiquées changent dans VL1-PE et VL1-L2. Sélectionner le pays "Europe" (voir § 5.1.2), les options "TN, TN ou IT", "25 ou 50V", "50Hz ou 60Hz" et la tension de référence dans les réglages généraux de l'instrument (voir § 5.1.3). NOTE : pour les pays autres que "Europe", les références MCB et Fusible disponibles peuvent changer

LOOP	15/10 – 1	8:04	
ΤN			
I^{\min}	=	A	
psc			
ZL-L	=	Ω	2
FRÉQ.	= 0.00H	lz	
VL-PE=	=0V	VL-L=0	V
	- · -	10.1	
L-L	l rip l	16A	0.2s
FONC	MODE	MCB-C	Temps

- 2. Utiliser les touches ◀, ▶pour sélectionner le paramètre à modifier et les touches ▲, ▼ pour modifier la valeur du paramètre :
 - FONC → La touche virtuelle permet de définir le mode de mesure de l'instrument, qui peut être : L-N, L-L ou L-PE (systèmes Monophasés/Triphasés) ou L1-PE, L1-L2 (systèmes Biphasés)
 - MODE -> La touche virtuelle permet de définir le mode de fonctionnement de l'instrument. Sélectionner l'option TripT
 - ➤ Type de protection → la touche virtuelle permet de programmer le type de protection (Fusible de type gG, aM ou magnétothermique MCB courbes B, C, D, K) et les courants nominaux respectifs en tenant compte des valeurs disponibles suivantes :

MCB courbe B → 3A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A

MCB courbe C → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 50A, 63A, 80A,100A,125A,160A,200A

MCB courbes D, K → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A

Fusible gG → 2A, 4A, 6A, 8A, 10A, 12A, 13A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A, 800A, 1000A, 1250A

Fusible aM → 2A, 4A, 6A, 10A, 12A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A

- ➤ Temps → la touche virtuelle permet de programmer le temps d'intervention de la protection parmi les options : 0.1s, 0.2s, 0.4s, 1s, 5s appuyer sur la touche SAVE pour enregistrer les paramètres sélectionnés et revenir sur la fenêtre-vidéo de mesure
- 3. Si possible, débrancher toutes les charges connectées en aval du point mesuré car l'impédance de ces fonctions pourrait fausser les résultats de l'essai. <u>Effectuer</u> <u>l'étalonnage préliminaire des aiguilles-sondes comme décrit au § 6.7.2</u>
- 4. Insérer les connecteurs vert, bleu et noir du câble shuko à trois broches dans les conducteurs d'entrée B3, B4 et B1 correspondants de l'instrument. En alternative, utiliser les câbles individuels et appliquer les pinces crocodiles respectives aux extrémités libres des câbles. Il est possible aussi d'utiliser l'embout à distance en insérant son connecteur multipolaire dans le câble d'entrée B1. Brancher la prise Shuko, les pinces-crocodiles ou l'embout à distance au secteur électrique conformément aux Fig. 25, Fig. 26, Fig. 27, Fig. 28, Fig. 29, Fig. 31, Fig. 32, Fig. 33 ou Fig. 34

5. Noter la présence des valeurs de tension correctes entre L-L et L-PE correspondant aux sélections effectuées dans la phase initiale comme indiqué sur la fenêtre-vidéo ci-contre

LOOP	15/10 – 1	8:04	
ΤN			►Ø◀
I^{\min}	=	A	
I psc		_	
ZL-L	=	Ω	
FRÉQ.	= 50.00	Hz	
VL-PE=	=223V	VL-L=3	87V
L-L	TripT	16A	0.2s
FONC	MODE	MCB-C	Temps

Appuyer sur la touche **GO/STOP** de l'instrument, sur la 6. touche START de l'embout à distance ou la fonction AutoStart (voir § 5.1.5). L'instrument démarre la mesure et le message "Mesure ... " s'affiche.

Pendant toute cette phase, ne pas débrancher les câbles de mesure de l'instrument du système testé. La pageécran suivante s'affiche

7. En cas de résultat positif (courant de court-circuit minimal interrompu par le dispositif de protection dans le délai indiqué par les sélections effectuées), l'instrument affiche le message "OK" ainsi que la fenêtre-vidéo ci contre

8.

LOOP	15/10 – 1	8:04					
ΤN			►ø◀				
I^{\min}	=		A				
I psc			-				
ZL-L	=		Ω				
FRÉQ.	= 50.00	Hz					
VL-PE=	223V	VL-L=3	387V				
Mesure							
L-L	TripT	16A	0.2s				
FONC	MODE	MCB-C	Temps				

LOOP	15/10 – 1	18:04				
TN I_{nsc}^{\min}	=	212 ^A	►Ø◀			
ZL-L	=	1.03 🤉	2			
FRÉQ. = 50.00Hz VL-PE=223V VL-L=387V						
ŌK						
L-L	TripT	16A	0.2s			
FONC	MODE	MCB-C	Temps			

En cas de résultat négatif (courant de court-circuit	LOOP	15/10 – 1	18:04	
minimal NON interrompu par le dispositif de protection dans le délai indiqué par les sélections effectuées), l'instrument affiche le message " OK " ainsi que la fenêtre- vidéo ci contre	TN I_{psc}^{\min} ZL-L	=	1681 0.13	A ►Ø ◀ Ω
	FRÉQ. VL-PE	. = 50.00 =223V	Hz VL-L≕	387V
		NO	N OK	
	L-L	TripT	16A	0.2s
	FONC	MODE	MCB-C	Temps

6.7.6. Test + Ra 2 fils - Contrôle de la protection contre les contacts indirects

 Appuyer sur la touche MENU, déplacer le curseur sur LOOP dans le menu principal à l'aide des touches fléchées (▲,▼) et confirmer avec ENTER. Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à l'image ci-contre en cas de système électrique L-N-PE monophasé sélectionné (voir § 5.1.3). Pour les systèmes biphasés L-L-PE, les tensions indiquées changent dans VL1-PE et VL1-L2 Sélectionner le pays "Europe" (voir § 5.1.2), les options "TN", "25 ou 50V", "50Hz ou 60Hz" et la tension de référence dans les réglages généraux de l'instrument (voir § 5.1.3). NOTE : pour les pays autres que "Europe", les références MCB et Fusible disponibles peuvent changer

-	001110			
r	LOOP	15/10 – 1	8:04	
S	ΤN			
è	I^{\min}	. =	A	
à	ZL-P	E =	Ω	2
	FRÉQ. VL-PE=	= 0.00H ⊧0V	z	
, ,	Ra ↓	2Fils	16A	0.2s
	FONC	MODE	MCB-C	Temps

2. Utiliser les touches ◀, ▶pour sélectionner le paramètre à modifier et les touches ▲, ▼ pour modifier la valeur du paramètre :

- FONC → La touche virtuelle permet de définir le mode de mesure de l'instrument, qui peut être : Ra +
- ➤ MODE→ La touche virtuelle permet de définir le mode de fonctionnement de l'instrument. Sélectionner l'option 2Fils
- ➤ Type de protection → la touche virtuelle permet de programmer le type de protection (Fusible de type gG, aM ou magnétothermique MCB courbes B, C, D, K) et les courants nominaux respectifs en tenant compte des valeurs disponibles suivantes :

MCB courbe B → 3A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A

MCB courbe C → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 50A, 63A, 80A,100A,125A,160A,200A

MCB courbes D, K → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A

Fusible gG → 2A, 4A, 6A, 8A, 10A, 12A, 13A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A, 800A, 1000A, 1250A

Fusible aM → 2A, 4A, 6A, 10A, 12A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A

- ➤ Temps → la touche virtuelle permet de programmer le temps d'intervention de la protection parmi les options : 0.1s, 0.2s, 0.4s, 1s, 5s appuyer sur la touche SAVE pour enregistrer les paramètres sélectionnés et revenir sur la fenêtre-vidéo de mesure
- 3. Si possible, débrancher toutes les charges connectées en aval du point mesuré car l'impédance de ces fonctions pourrait fausser les résultats de l'essai. Effectuer l'étalonnage préliminaire des aiguilles-sondes comme décrit au § 6.7.2
- 4. Insérer les connecteurs vert, bleu et noir du câble shuko à trois broches dans les conducteurs d'entrée B3, B4 et B1 correspondants de l'instrument. En alternative, utiliser les câbles individuels et appliquer les pinces crocodiles respectives aux extrémités libres des câbles. Il est possible aussi d'utiliser l'embout à distance en insérant son connecteur multipolaire dans le câble d'entrée B1. Brancher la prise Shuko, les bornes crocodile ou l'embout à distance au secteur conformément àFig. 31, Fig. 32 ou Fig. 33

5. Noter la présence des valeurs de tension correctes entre L-PE correspondant aux sélections effectuées dans la phase initiale comme indiqué sur la fenêtre-vidéo cicontre

LOOP	15/10 – 1	8:04	
TN I_{pfc}^{\min}	= ·	A	►Ø◀
ZL-PE	≣ = ·	Ω	2
FRÉQ. VL-PE=	= 50.00 =223V	Hz	
Ra÷	2Fils	16A	0.2s
FONC	MODE	MCB-C	Temps

6. Appuyer sur la touche **GO/STOP** de l'instrument, sur la LOOP 15/10 – 18:04 touche START de l'embout à distance ou la fonction TN AutoStart (voir § 5.1.5). L'instrument démarre la mesure et le message "Mesure..." s'affiche.

Pendant toute cette phase, ne pas débrancher les câbles de mesure de l'instrument du système testé. La pageécran suivante s'affiche

7. En cas de résultat **positif** ($Z_{L-PE} \leq impédance limite$) relative au dispositif de protection dans le délai indiqué - voir § 12.10), l'instrument affiche le message "OK" ainsi que la fenêtre-vidéo ci contre

ZL-P	E =	32			
FRÉQ. = 50.00Hz VL-PE=223V					
	Mes	ure			
Ra÷	2Fils	16A	0.2s		
FONC	MODE	MCB-C	Temps		
LOOP 15/10 – 18:04					
TN ►Ø◀					

 I^{\min}

^L pfc

►Ø◀

А

TN I_{c}^{\min}	=	1213	A ►Ø◄
ZL-PE	=	0.18	Ω
FRÉQ. = VL-PE=2	50.0 23V	0Hz	
		OK	
Ra÷	2Fils	16A	0.2s

FONC MODE MCB-C Temps

8. En cas de résultat négatif (ZL-PE > impédance limite relative au dispositif de protection dans le délai indiqué- voir § 12.10), l'instrument affiche le message "NON OK" ainsi que la fenêtre-vidéo ci contre

ļ	LOOP 1	5/10 – ⁻	18:04		
	TN I_{nfc}^{min}	=	88	A ►Ø∢	
	ZL-PE	=	2.08	Ω	
	FRÉQ. = 50.00Hz VL-PE=223V				
		NO	N OK		
	Ra∔	2Fils	16A	0.2s	
	FONC	MODE	MCB-C	C Temps	

6.7.7. Test + Ra 3 fils - Contrôle de la protection contre les contacts indirects

 Appuyer sur la touche MENU, déplacer le curseur sur LOOP dans le menu principal à l'aide des touches fléchées (▲,▼) et confirmer avec ENTER. Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à l'image ci-contre en cas de système électrique L-N-PE monophasé sélectionné (voir § 5.1.3). Pour les systèmes biphasés L-L-PE, les tensions indiquées changent dans VL1-PE et VL1-L2. Sélectionner le pays "Europe" (voir § 5.1.2), les options "TN", "25 ou 50V", "50Hz ou 60Hz" et la tension de référence dans les réglages généraux de l'instrument (voir § 5.1.3). NOTE : pour les pays autres que "Europe", les références MCB et Fusible disponibles peuvent changer

-					
•	LOOP	15/10 – 18	3:04		
	ΤN				
•	lsc=	- A ZL	- N =	Ω	
	lfc=	- A ZL	- P E =	- Ω	
	FRÉQ=0.00Hz VL-N=0V VL-PE=0V				
-	Ra ‡	3Fils	16A	0.2s	
	FONC	INODE	INCR-C	remps	

- 2. Utiliser les touches ◀, ▶pour sélectionner le paramètre à modifier et les touches ▲, ▼ pour modifier la valeur du paramètre
 - FONC → La touche virtuelle permet de définir le mode de mesure de l'instrument, qui peut être : Ra +
 - ➤ MODE→ La touche virtuelle permet de définir le mode de fonctionnement de l'instrument. Sélectionner l'option 3Fils
 - ➤ Type de protection → la touche virtuelle permet de programmer le type de protection (Fusible de type gG, aM ou magnétothermique MCB courbes B, C, D, K) et les courants nominaux respectifs en tenant compte des valeurs disponibles suivantes :

MCB courbe B → 3A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A

MCB courbe C → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 50A, 63A, 80A,100A,125A,160A,200A

MCB courbes D, K → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A

Fusible gG → 2A, 4A, 6A, 8A, 10A, 12A, 13A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A, 800A, 1000A, 1250A

Fusible aM → 2A, 4A, 6A, 10A, 12A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A

- ➤ Temps → la touche virtuelle permet de programmer le temps d'intervention de la protection parmi les options : 0.1s, 0.2s, 0.4s, 1s, 5s appuyer sur la touche SAVE pour enregistrer les paramètres sélectionnés et revenir sur la fenêtre-vidéo de mesure
- 3. Si possible, débrancher toutes les charges connectées en aval du point mesuré car l'impédance de ces fonctions pourrait fausser les résultats de l'essai. <u>Effectuer l'étalonnage préliminaire des aiguilles-sondes comme décrit au § 6.7.2</u>
- 4. Insérer les connecteurs vert, bleu et noir du câble shuko à trois broches dans les conducteurs d'entrée B3, B4 et B1 correspondants de l'instrument. En alternative, utiliser les câbles individuels et appliquer les pinces crocodiles respectives aux extrémités libres des câbles. Il est possible aussi d'utiliser l'embout à distance en insérant son connecteur multipolaire dans le câble d'entrée B1. Brancher la prise Shuko, les pinces-crocodiles ou l'embout à distance au secteur électrique conformément aux Fig. 25, Fig. 26, Fig. 27, Fig. 28 ou Fig. 29

5. Noter la présence des valeurs de tension correctes enti L-PE et L-N correspondant aux sélections effectuée dans la phase initiale comme indiqué sur la fenêtre-vidé ci-contre

re	AUTO	15/10 – 18	3:04	
es	ΤN			
éo	lsc=	- A ZL	- N =	Ω
	lfc=	- A ZL	- P E =	- Ω
	FRÉQ VL-N=2	=50.00 232V)Hz √L-PE=2	231V
	Ra ↓	3Fils	16A	0.2s
	FONC	MODE	MCB-C	Temps

15/10 - 18:04

lfc=--- A ZL-PE=---Ω

VL-N=232V VL-PE=231V

Mesure...

16A

0.2s

FRÉQ=50.00Hz

3Fils

Ra÷

6. Appuyer sur la touche **GO/STOP** de l'instrument, sur la AUTO ΤN touche START de l'embout à distance ou la fonction AutoStart (voir § 5.1.5). L'instrument démarre la mesure Isc=--- A ZL-N=--- Ω et le message "Mesure ... " s'affiche.

Pendant toute cette phase, ne pas débrancher les câbles de mesure de l'instrument du système testé. La pageécran suivante s'affiche

7. En cas de résultat positif (ZL-PE ≤ impédance limite relative au dispositif de protection dans le délai indiqué - voir § 12.10), l'instrument affiche le message "OK" ainsi que la fenêtre-vidéo ci contre

FONC	MODE	= IV	ICB-C	Temps
AUTO 1	5/10 –	18:0	4	
ΤN				
lsc=1; Ω	365	A	ZL-N	l=0,16
lfc=12	213A	ZL	-PE=	0.18Ω
FRÉQ: VL-N=2	=50.0 232V	DOH VL	z - P E = 2	231V
		ΟK		
Ra ↓	3Fils		16A	0.2s

FONC MODE MCB-C Temps

 En cas de résultat négatif (ZL-PE > impédance limite relative au dispositif de protection dans le délai 	AUTO 15/10 – 18:04
"OK " ainsi que la fenêtre-vidéo ci contre	Isc=89 A ZL-N=2.06Ω
	Ifc=88A ZL-PE=2.08Ω
	FRÉQ=50.00Hz VL-N=232V VL-PE=231V
	NON OK
	Ra÷ 3Fils 16A 0.2s
	FONC MODE MCB-C Temps

6.7.8. Contrôle de la protection contre les contacts indirects (systèmes IT)

 Appuyer sur la touche MENU, déplacer le curseur sur LOOP dans le menu principal à l'aide des touches fléchées (▲,▼) et confirmer avec ENTER. Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à l'image ci-contre en cas de système électrique L-N-PE monophasé sélectionné (voir § 5.1.3). Pour les systèmes biphasés L-L-PE, les tensions indiquées changent dans VL1-PE et VL1-L2. Sélectionner le pays "Europe" (voir § 5.1.2), les options "IT", "25 ou 50V", "50Hz ou 60Hz" et la tension de référence dans les réglages généraux de l'instrument (voir § 5.1.3)

	13 (3)3	CIIICO	•••	
r	LOOP	15/10 – 1	8:04	
S	IT			
Э	lpfc	=		mΑ
à	Ut	=		V
5	FRÉQ. VL-PE=	= 0.00H ⊧0V	z VL-N	I=0V
, 5	L-PE	Ut		
	FONC	MODE		

- 2. Utiliser les touches ◀, ▶pour sélectionner le paramètre à modifier et les touches ▲, ▼ pour modifier la valeur du paramètre :
 - FONC → La touche virtuelle permet de définir le mode de mesure de l'instrument, qui peut être : L-PE (systèmes Monophasés/Triphasés) ou L1-PE (systèmes Biphasés)

MODE → la touche permet de régler la tension de contact limite Ut (voir § 5.1.3) appuyer sur la touche SAVE pour enregistrer les paramètres sélectionnés et revenir sur la fenêtre-vidéo de mesure

- 3. Si possible, débrancher toutes les charges connectées en aval du point mesuré car l'impédance de ces fonctions pourrait fausser les résultats de l'essai. Effectuer l'étalonnage préliminaire des aiguilles-sondes comme décrit au § 6.7.2
- 4. Insérer les connecteurs vert, bleu et noir du câble shuko à trois broches dans les conducteurs d'entrée B3, B4 et B1 correspondants de l'instrument. En alternative, utiliser les câbles individuels et appliquer les pinces crocodiles respectives aux extrémités libres des câbles. Il est possible aussi d'utiliser l'embout à distance en insérant son connecteur multipolaire dans le câble d'entrée B1. Brancher la prise Shuko, les pinces-crocodiles ou l'embout à distance au secteur électrique conformément à la Fig. 30

5.	Noter la présence des valeurs de tension correctes entre	LOOP 15/10 – 18:04
	L-PE et L-N comme indiqué sur la fenêtre-vidéo ci-contre	IT Ipfc = mA
		Ut = V
		FRÉQ. = 50.00Hz VL-PE=232V VL-N=234V
		L-PE Ut
		FONC MODE
6.	Appuyer sur la touche GO/STOP de l'instrument, sur la touche START de l'embout à distance ou la fonction	LOOP 15/10 – 18:04
	AutoStart (voir § 5.1.5). L'instrument démarre la mesure et le message "Mesure…" s'affiche.	Ut = V
	Pendant toute cette phase, ne pas débrancher les câbles de mesure de l'instrument du système testé. La page-	FRÉQ. = 50.00Hz VL-PE=232V VL-N=234V
	ecran suivante s'affiche	Mesure
		L-PE Ut
7. En cas de résultat **positif** (tension de contact du point
<50V ou <25V), l'instrument affiche le message "OK"</p>
ainsi que la fenêtre-vidéo ci contre qui contient la valeur du courant de premier défaut mesuré, exprimée en mA (voir § 12.9)

t	LOOP	15/10 – 1	8:04		
,	IT				
r	lpfc	=	83	m	ΙA
`	Ut	=	1	V	
	FRÉQ.	= 50.00	Hz		
	VL-PE=	=232V	VL	-N=2	34V
		C)K		
	L-PE	Ut			
	FONC	MODE			

- 8. En cas de résultat négatif (tension de contact sur le point LOOP 15/10 18:04
 >50V ou >25V), l'instrument affiche le message "NON IT Ipfc = >99
 - LOOP 15/10 18:04

 IT

 Ipfc = >999 mA

 Ut = >50 V

 FRÉQ. = 50.00Hz

 VL-PE=232V

 VL-PE=232V

 VL-PE

 Ut

 FONC
- 9. Appuyer sur la touche **SAVE** pour stocker le résultat du test dans la mémoire de l'instrument (voir § 7.1) ou sur la touche **ESC/MENU** pour quitter la fenêtre-vidéo sans enregistrer et revenir au menu principal

6.7.9. Contrôle de la protection contre les contacts indirects (systèmes TT)

 Appuyer sur la touche MENU, déplacer le curseur sur LOOP dans le menu principal à l'aide des touches fléchées (▲,▼) et confirmer avec ENTER. Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à l'image ci-contre en cas de système électrique L-N-PE monophasé sélectionné (voir § 5.1.3). Pour les systèmes biphasés L-L-PE, les tensions indiquées changent dans VL1-PE et VL1-L2. Sélectionner le pays "Europe" (voir § 5.1.2), les options "TT", "25 ou 50V", "50Hz ou 60Hz" et la tension de référence dans les réglages généraux de l'instrument (voir § 5.1.3).

r	LOOP	15/10 – 1	8:04		
5	ΤT				
è	R A	=		Ω	
2	Ut	=		V	
	FRÉQ. VL-PE=	= 0.00H =0V	lz		
,	Ra ↓	2Fils	30mA		
	FONC	MODE	IΔn		

- 2. Utiliser les touches ◀, ▶pour sélectionner le paramètre à modifier et les touches ▲, ▼ pour modifier la valeur du paramètre :
 - FONC → la touche virtuelle permet de définir le mode de mesure de l'instrument, qui peut être Ra +
 - > **MODE** → Mode 2-Wire fixe
 - ➢ I∆n → La touche virtuelle permet de définir la valeur nominale du courant d'intervention RCD, qui peut être : 6mA, 10mA, 30mA, 100mA, 300mA, 500mA, 650mA, 1000mA

appuyer sur la touche **SAVE** pour enregistrer les paramètres sélectionnés et revenir sur la fenêtre-vidéo de mesure

- 3. Si possible, débrancher toutes les charges connectées en aval du point mesuré car l'impédance de ces fonctions pourrait fausser les résultats de l'essai. Effectuer l'étalonnage préliminaire des aiguilles-sondes comme décrit au § 6.7.2
- 4. Insérer les connecteurs vert, bleu et noir du câble shuko à trois broches dans les conducteurs d'entrée B3, B4 et B1 correspondants de l'instrument. En alternative, utiliser les câbles individuels et appliquer les pinces crocodiles respectives aux extrémités libres des câbles. Il est possible aussi d'utiliser l'embout à distance en insérant son connecteur multipolaire dans le câble d'entrée B1. Brancher la prise Shuko, les bornes crocodile ou l'embout à distance au secteur conformément àFig. 31, Fig. 32 ou Fig. 33

5.	Noter la présence des valeurs de tension correctes entre	LOOP	15/10 – 1	8:04	
	L-PE comme indiqué sur la fenêtre-vidéo ci-contre	TT R _A	= -	· 0	2
		Ut	= -	· V	/
		FREQ. VL-PE:	= 50.00F =232V	Hz	
		Ra ‡	2Fils	30mA	
		FONC	MODE	IΔn	

_		
6.	Appuyer sur la touche GO/STOP de l'instrument, sur la touche START de l'embout à distance ou la fonction	LOOP 15/10 – 18:04
	AutoStart (voir § 5.1.5). L'instrument démarre la mesure	$RA = \Omega$
	et le message "Mesure" s'affiche.	Ut = V
	Pendant toute cette phase, ne pas débrancher les câbles de mesure de l'instrument du système testé. La page- écran suivante s'affiche	FRÉQ. = 50.00Hz VL-PE=232V
		Mesure
		Ra÷ 2Fils 30mA
		FONC MODE IAn
7.	En cas de résultat positif (résistance globale de terre	LOOP 15/10 – 18:04
	$R_A < (Utlim / I \Delta n)$, l'instrument affiche le message "OK"	TT P 246 O
	ainsi que la fenêtre-vidéo ci contre qui contient la valeur de la tension de contact sur l'afficheur secondaire	$RA = 540 \Omega$
		Ut = 10.4 V
		FRÉQ. = 50.00Hz
		VL-PE=232V
		OK
		Ra <mark>÷</mark> 2Fils 30mA
		FONC MODE IAn
Q	En cos do régultat positif (régistance globale de terre	LOOP 15/10 18:04
0.	$R_{\Lambda} > (IIt lim / IAn)$ l'instrument affiche le message "NON	TT
	OK " ainsi que la fenêtre-vidéo ci contre qui contient la	$R_A = 1765 \Omega$
	valeur de la tension de contact sur l'afficheur secondaire	Ut = >50 V
		FRÉQ. = 50.00Hz
		VL-PE=232V
		NON OK
		Ra <mark>÷</mark> 2Fils 30mA
		FONC MODE IAn

9. Appuyer sur la touche **SAVE** pour stocker le résultat du test dans la mémoire de l'instrument (voir § 7.1) ou sur la touche **ESC/MENU** pour quitter la fenêtre-vidéo sans enregistrer et revenir au menu principal

6.7.10. Contrôle de la protection contre les contacts indirects (systèmes TN)

 Appuyer sur la touche MENU, déplacer le curseur sur LOOP dans le menu principal à l'aide des touches fléchées (▲,▼) et confirmer avec ENTER. Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à l'image ci-contre en cas de système électrique L-N-PE monophasé sélectionné (voir § 5.1.3). Pour les systèmes biphasés L-L-PE, les tensions indiquées changent dans VL1-PE et VL1-L2 Sélectionner le pays "Europe" (voir § 5.1.2), les options "TN", "25 ou 50V", "50Hz ou 60Hz" et la tension de référence dans les réglages généraux de l'instrument (voir § 5.1.3). NOTE : pour les pays autres que "Europe", les références MCB et Fusible disponibles peuvent changer

-				
	LOOP	15/10 – 1	8:04	
	ΤN			
	I^{\min}	=	A	
	I pfc			
	ZL-PE	= =	Ω	2
	FRÉQ.	= 0.00H	z	
	VL-PE=	=0V	VL-N=0	V
			10.1	0.0-
	L-PE	Ut	16A	0.2s
	FONC	MODE	MCB-C	Temps

- 2. Utiliser les touches ◀, ▶pour sélectionner le paramètre à modifier et les touches ▲, ▼ pour modifier la valeur du paramètre
 - FUNC→ la touche virtuelle permet de définir le mode de mesure de l'instrument, qui peut être L-PE
 - ➢ MODE→ La touche virtuelle permet de définir le mode de fonctionnement de l'instrument. Sélectionner l'option Ut
 - ➤ Type de protection → la touche virtuelle permet de programmer le type de protection (Fusible de type gG, aM ou magnétothermique MCB courbes B, C, D, K) et les courants nominaux respectifs en tenant compte des valeurs disponibles suivantes :

MCB courbe B → 3A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A

MCB courbe C → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 50A, 63A, 80A,100A,125A,160A,200A

MCB courbes D, K → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A

Fusible gG → 2A, 4A, 6A, 8A, 10A, 12A, 13A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A, 800A, 1000A, 1250A

Fusible aM → 2A, 4A, 6A, 10A, 12A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A

➤ Temps → la touche virtuelle permet de programmer le temps d'intervention de la protection parmi les options : 0.1s, 0.2s, 0.4s, 1s, 5s appuyer sur la touche SAVE pour enregistrer les paramètres sélectionnés et revenir

sur la fenêtre-vidéo de mesure

- 3. Si possible, débrancher toutes les charges connectées en aval du point mesuré car l'impédance de ces fonctions pourrait fausser les résultats de l'essai. <u>Effectuer</u> <u>l'étalonnage préliminaire des aiguilles-sondes comme décrit au § 6.7.2</u>
- 4. Insérer les connecteurs vert, bleu et noir du câble shuko à trois broches dans les conducteurs d'entrée B3, B4 et B1 correspondants de l'instrument. En alternative, utiliser les câbles individuels et appliquer les pinces crocodiles respectives aux extrémités libres des câbles. Il est possible aussi d'utiliser l'embout à distance en insérant son connecteur multipolaire dans le câble d'entrée B1. Brancher la prise Shuko, les pinces-crocodiles ou l'embout à distance au secteur électrique conformément aux Fig. 25, Fig. 26, Fig. 27, Fig. 28 ou Fig. 29

Noter la présence des valeurs de tension correctes entre LOOP 15/10 – 18:04
 L-PE et L-N comme indiqué sur la fenêtre-vidéo ci-contre TN

6. Appuyer sur la touche **GO/STOP** de l'instrument, sur la <u>LOOP 15/10 – 18:04</u> touche **START** de l'embout à distance ou la fonction **AutoStart** (voir § 5.1.5). L'instrument démarre la mesure et le message "**Mesure**..." s'affiche.

Pendant toute cette phase, ne pas débrancher les câbles de mesure de l'instrument du système testé. La pageécran suivante s'affiche

7. En cas de résultat **positif** (courant de court-circuit minimal calculé SUPÉRIEUR au courant d'intervention du dispositif de protection dans le délai indiqué - voir § 12.6), l'instrument affiche le message "OK" ainsi que la fenêtre-vidéo ci contre

ΤN			►Ø◀		
I_{pfc}^{\min}	=	A			
ZL-PE	= -	Ω	2		
FRÉQ. = 50.00Hz VL-PE=232V VL-N=231V					
	Mes	ure			
L-PE	Ut	16A	0.2s		
FONC	MODE	MCB-C	Temps		

t	LOOP	15/10 – 1	18:04	
ı Ş	TN I_{nfa}^{min}	=	214	A ►Ø◄
a	<i>pjc</i> ZL-PE	= =	1.03	Ω
	FRÉQ. VL-PE=	= 50.00 =232V	Hz VL-N:	=231V
		(ЭK	
	L-PE	Ut	16A	0.2s
	FONC	MODE	MCB-0	C Temps

 8. En cas de résultat **positif** (courant de court-circuit Loc minimal calculé INFÉRIEUR au courant d'intervention du dispositif de protection dans le délai indiqué - voir § 12.6), l'instrument affiche le message "NON OK" ainsi que la fenêtre-vidéo ci contre

t	LOOP	15/10 – 1	18:04	
	TN I_{pfc}^{\min} ZL-PE	=	1695 0.13	A ►Ø◄
	FRÉQ. VL-PE=	= 50.00 =232V	Hz VL-N=	=231V
		NO	N OK	
	L-PE	Ut	16A	0.2s
	FONC	MODE	MCB-C	C Temps

 Appuyer sur la touche SAVE pour stocker le résultat du test dans la mémoire de l'instrument (voir § 7.1) ou sur la touche ESC/MENU pour quitter la fenêtre-vidéo sans enregistrer et revenir au menu principal

А

6.7.11. Situations anormales

Si l'instrument mesure une fréquence supérieure à la LOOP 15/10 - 18:04 1. ΤN limite maximale (63 Hz), il n'effectue pas le test et affiche lpfc une fenêtre-vidéo semblable à celle illustrée ci-contre

> $ZL-PE = - - - \Omega$ FRÉQ. = >63Hz VL-PE=0V VL-N=0V

=

Fréquence hors-plage L-PE STD FONC MODE

2.	Si l'instrument mesure une tension L-N ou L-PE inférieure	LOOP 1	5/10 – 1	8:04		
	à la limite minimale (100V), il n'effectue pas le test et affiche une fenêtre-vidéo semblable à celle illustrée ci- contre. Vérifier que le système testé soit alimenté	TN Ipfc ZL-PE	= -		A Ω	
		FRÉQ. =	= 50.00	Hz		

3. Si l'instrument mesure une tension L-N ou L-PE supérieure à la limite maximale (265V), il n'effectue pas le test et affiche une fenêtre-vidéo semblable à celle illustrée ci-contre. Vérifier la connexion des câbles de mesure

LOOP 15/2	10 –	18	:04	4	
TN					
lpfc	=	-	-	-	А
ZL-PE	=	-	-	-	Ω
FRÉQ. = 5	50.00	ЭΗ	z		
VL-PE=>2	65V		VI	L-N	=>265V
Те	nsic	n	>2	265	V
L-PE S	TD				
FONC M	DDE				

VL-PE=<100V VL-N=<100V

Tension <100V

STD

FONC MODE

L-PE

Si l'instrument détecte une tension L-L supérieure à la 4. limite maximale (460 V), il n'effectue pas le test et affiche une fenêtre-vidéo semblable à celle illustrée ci-contre. Vérifier la connexion des câbles de mesure

l	LOOP	15/10 – 1	18:0	4		
•	TN	_			٨	
	ipic	-		-	A	
	ZL-L	=		-	Ω	
	FRÉQ. VL-PE=	= 50.00 =>265V	Hz V	L-L=	=>460V	
		Tensio	n >4	460)	V	
	L-L	STD				
	FONC	MODE				

7.

8.

5. Si l'instrument détecte une tension dangereuse sur le conducteur PE, il affiche la fenêtre d'avertissement illustrée ci-contre et bloque l'exécution des essais. Vérifier l'efficacité du conducteur PE et du système de terre

ļ	LOOP 15/10 – 18:04
	TN
	lpfc = A
,	$ZL-PE = \Omega$
	FRÉQ. = 50.00Hz
	VL-PE= 231V VL-N= 234V
	Tension sur PE
	L-PE STD
	FONC MODE

Si l'instrument détecte l'absence du signal à la borne B4 6. (conducteur neutre), il affiche la fenêtre d'avertissement illustrée ci-contre et bloque l'exécution des essais

LOOP 15	/10 –	18	:04	4	
ΤN					
lpfc	=	-	-	-	А
ZL-PE	=	-	-	-	Ω
FRÉQ. =	50.0	OН	z		
VL-PE= 2	231V		VI	L-N	= 115V
	N ma	and	qu	ant	
L-PE	STD				
FONC N	10DE				

Si l'instrument détecte l'absence du signal à la borne B3	LOOP 15/10 – 18:04
(conducteur PE), il affiche la fenêtre d'avertissement illustrée ci-contre et bloque l'exécution des essais	TN pfc = A ZL-PE = 0
	FRÉQ. = 50.00Hz VL-PE= 115V VL-N= 231V
	PE manquant
	L-PE STD
	FONC MODE

Si l'instrument détecte l'absence du signal à la borne B1	LOOP 15/10 – 18:04
(conducteur de phase), il affiche la fenêtre	TN
d'avertissement illustrée ci-contre et bloque l'exécution	lpfc = A
des essais	ZL-PE = Ω
	FRÉQ. = 50.00Hz VL-PE= 0V VL-N= 0V
	L manquant
	L-PE SID
	FONC MODE

ŴHT

9. Si l'instrument détecte que les conducteurs de phase L et LOOP le neutre N sont inversés, il n'effectue pas le test et TN affiche une fenêtre-vidéo semblable à celle illustrée cicontre. Tourner la fiche secteur ou vérifier la connexion des câbles de mesurage

t	LOOP 15/10 – 18:04
t	TN
-	Ipfc = A
۱	ZL-PE =Ω
	FRÉQ. = 50.00Hz
	VL-PE= 1V VL-N= 231V
	Inverser L-N
	L-PE STD
	FONC MODE

10. Si l'instrument détecte que les conducteurs de phase et LOOP 15/10
 PE sont inversés, il n'effectue pas le test et affiche une fenêtre-vidéo semblable à celle illustrée ci-contre. Vérifier la connexion des câbles de mesure

11.	Si l'instrument détecte une tension de contact nuisible Ut	L
	(au-delà de la limite programmée de 25V ou 50V) lors du	٦
	pré-test initial, il affiche la fenêtre d'avertissement	
	illustrée ci-contre et bloque l'exécution des essais.	
	Vérifier l'efficacité du conducteur PE et du système de	
	terre	_

LOOP	LOOP 15/10 - 18:04			
TN Ipfc	=	A		
ZL-PE	=	Ω		
FRÉQ. = 50.00Hz VL-PE= 231V VL-N= 1V				
Inverser L-PE				
L-PE	STD			
FONC	MODE			

40.04

LOOP	15/10 – 1	18:04	4		
ΤT					
RΑ	=		-	Ω	
Ut	=		-	V	
FRÉQ.	= 50.00	Ηz			
VL-PE=	= 231V				
Tens	sion de c	cont	act.	>	Lim
Ra	2Fils	3	0mA		
FUNC	MODE		Δ n		

3.

6.8. LOZ: IMPEDANCE LIGNE/LOOP HAUTE RESOLUTION

Les mesures d'impédance de Ligne/Loop haute résolution (0,1 mΩ) sont effectuées à l'aide de l'accessoire en option IMP57 connecté à l'unité Master à travers le câble optique/RS-232 C2001 fourni avec l'accessoire. IMP57 doit être alimenté directement à partir du secteur sur lequel les mesures sont effectuées. Pour plus d'informations, se référer au manuel d'utilisation de l'accessoire IMP57

Nous reportons ci-dessous la procédure de mesure de l'impédance STD L-L dans les systèmes TN. Les mêmes procédures peuvent être appliquées à tout autre cas, compte tenu de ce qui est rapporté au § 6.7

- 1. Appuyer sur la touche MENU, déplacer le curseur sur LoZ 15/10 - 18:04 LoZ dans le menu principal à l'aide des touches fléchées (\blacktriangle, ∇) et confirmer avec **ENTER**. Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à l'image ci-contre en cas de système électrique L-N-PE monophasé sélectionné (voir § 5.1.3). Pour les systèmes biphasés L-L-PÈ, les tensions indiquées changent dans VL1-PE et VL1-L2. Le message "IMP57 non connecté" indique que l'accessoire IMP57 n'est pas connecté à l'instrument ou n'est pas alimenté directement par le secteur
- 2. Connecter IMP57 à l'instrument via le câble C2001 et au système alimenté à travers les bornes d'entrée C1, C2 et P1, P2 situées sur celui-ci (voir manuel d'utilisation de IMP57). L'afficheur visualise la fenêtre-vidéo ci-contre

TN Ips ZL-	c = - L = -		A mΩ	
R = FRÉQ. VL-L= -	∙mΩ =Hz V	X =	mΩ	
IM	P57 non	conr	necté	
L-L	STD			
FONC	MODE			

I	LoZ 15/10 – 18:04
t	TN
2	lpsc = A
	ZL-L = mΩ
	$R = m\Omega$ $X = m\Omega$
	FRÉQ. = 50.0Hz
	VL-L= 384 V
	L-L STD
	FONC MODE

Appuyer sur la touche GO/STOP de l'instrument pour	LoZ 15/10 – 18:04 🔳
démarrer le test. La fenêtre suivante s'affiche (en cas de mesure L-L en mode STD) Le courant de court-circuit supposé standard (STD) est affiché sur l'écran. La partie centrale de l'afficheur montre les valeurs d'impédance de LOOP L-L, en plus de ses composantes résistives et réactives, exprimées en $\mathbf{m}\Omega$	TN Ipsc = 15.3 kA ZL-L = 15.0 m Ω R = 13.2 m Ω X = 7.5 m Ω FRÉQ. = 50.0Hz VL-L= 384 V
	L-L STD
	FONC MODE

- 4. Appuyer sur la touche SAVE pour stocker le résultat du test dans la mémoire de
- l'instrument (voir § 7.1) ou sur la touche ESC/MENU pour quitter la fenêtre-vidéo sans enregistrer et revenir au menu principal

6.9. 1,2,3 : SEQUENCE DES PHASES ET CONCORDANCES

Cette fonction permet de tester la séquence et la concordance des phases avec la **méthode à 1 borne** par contact direct avec des parties sous tension (<u>non pas sur des</u> <u>câbles avec gaine isolante</u>)

Fig. 35: Contrôle de la séquence phases avec câble de mesure

Fig. 36: Contrôle de la séquence phases avec embout à distance

Appuyer sur la touche MENU, déplacer le curseur sur <u>123 15/10 – 18:04</u>
 1,2,3 dans le menu principal à l'aide des touches fléchées (▲,▼) et confirmer avec ENTER. Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à l'image ci-contre

2. Insérer le connecteur du câble noir dans le câble d'entrée B1 correspondant de l'instrument. En alternative, utiliser le câble individuel et appliquer la pince crocodile à l'extrémité libre du câble. Il est possible aussi d'utiliser l'embout à distance en insérant son connecteur multipolaire dans le câble d'entrée B1. Brancher les pinces-crocodiles ou l'embout à distance au secteur électrique en fonction des Fig. 35 ou Fig. 36

- 3. Appuyer sur la touche GO/STOP de l'instrument ou sur la touche START de l'embout à distance. L'instrument TN
 Le message "Touch L1" est visualisé sur l'afficheur pour indiquer l'attente de connexion de l'instrument à la phase L1 du système testé
 Toucher la partie active de la phase L1
- 4. L'instrument émet un son prolongé tant que la tension 123 15/10 18:04 d'entrée n'est pas présente. À la fin de l'acquisition de la phase L1, l'instrument est en attente du signal sur la phase L2 et affiche le symbole de "Relâcher L1" comme illustré sur la fenêtre-vidéo ci-contre
 - Dans ces conditions, connecter la borne à pincecrocodile ou l'embout à distance à la phase L2 comme illustré dans les Fig. 35 ou Fig. 36.

L'écran affiche le message "**Touch L2**" indiquant l'attente de connexion de l'instrument à la phase L2 du système testé.

Toucher la partie active de la phase L2

6. L'instrument émet un son prolongé tant que la tension d'entrée n'est pas présente. À la fin du test, si la séquence des phases détectée est correcte, l'instrument affiche une fenêtre-vidéo semblable à celle illustrée cicontre (résultat "123") avec le message "OK"

- Relâcher L1
- 123 15/10 18:04 TN
 - - Toucher L2 1T
 MODE

n	123 1	5/10 – 1	8:04	
а	ΤN			
t				
i-		1	23	
		(ЭK	
	1T			
	MODE			

7. À la fin du test, si la séquence des phases détectée est incorrecte, l'instrument affiche une fenêtre vidéo semblable à celle illustrée ci-contre (résultat "213") avec le message "NON OK"
 2 1 3

	NUI	V UK	
. –			
1T			
MODE			

ΟK

1T MODE À la fin du test, si les deux tensions détectées sont en phase (<u>concordance de phase entre deux systèmes</u> TN <u>triphasés distincts</u>), l'instrument affiche une fenêtre vidéo semblable à celle illustrée ci-contre (résultat "11-") et le message "OK"

9. Appuyer sur la touche **SAVE** pour stocker le résultat du test dans la mémoire de l'instrument (voir § 7.1) ou sur la touche **ESC/MENU** pour quitter la fenêtre-vidéo sans enregistrer et revenir au menu principal

6.9.1. Situations anormales

 Si l'instrument mesure une fréquence supérieure à la <u>123 15/10 – 18:04</u> limite maximale, il n'effectue pas le test et affiche une TN fenêtre-vidéo semblable à celle illustrée ci-contre

 Si l'instrument détecte une tension en entrée L-PE <u>123 15/10 – 18:04</u>
 supérieure à 265V, il affiche une fenêtre-vidéo semblable TN à celle illustrée ci-contre

3. Si entre le début du test et l'acquisition de la première tension ou entre l'acquisition de la première et de la deuxième tension, il s'est écoulé un temps supérieur à environ 10s, l'instrument affiche une fenêtre-vidéo semblable à celle illustrée ci-contre. Il est nécessaire de répéter le test

123	15/10 – 18:04
ΤN	
	Temps écoulé
1T	
MOD	DE

Tension > 265V

1T MODE

6.10. $\Delta V\%$: CHUTE DE TENSION SUR LES LIGNES

Cette fonction permet d'évaluer la valeur en pourcentage de la chute de tension entre deux points d'une ligne d'alimentation principale possédant un dispositif de protection et compare cette valeur avec les éventuelles limites réglementaires. Les modes de fonctionnement suivants sont disponibles

- L-N Mesure de l'impédance de ligne entre le conducteur de phase et le conducteur de neutre. La mesure est effectuée aussi en haute résolution (0.1mΩ) avec l'accessoire en option IMP57
- L-L Mesure d'impédance de ligne entre deux conducteurs de phase (L1-L2 pour les systèmes Biphasés). La mesure est effectuée aussi en haute résolution (0.1mΩ) avec l'accessoire en option IMP57

La mesure de l'impédance de ligne ou de LOOP de défaut implique la circulation d'un courant maximal selon les caractéristiques techniques de l'instrument (voir § 12.11). Cela pourrait comporter l'intervention d'éventuelles protections magnétothermiques avec des courants d'intervention inférieurs

Fig. 37: Connexion instrument pour la mesure de chute de tension en mode L-N

Fig. 38: Connexion instrument pour la mesure de chute de tension en mode L-L

- Appuyer sur la touche MENU, déplacer le curseur sur ΔV% dans le menu principal à l'aide des touches fléchées (▲,▼) et confirmer avec ENTER. Tout de suite après, l'instrument affiche une fenêtre-vidéo semblable à l'image ci-contre

•	ΔV% 1	5/10 – 1	8:04			
	ΔV%	% = -	%	, D		
ł	ZL-	N = -	Ω	2		
	FRÉQ. = 0.00Hz VL-PE= 0V VL-N= 0V					
	L-N	16A	4%	0.00Ω		
	MODE	Inom	Lim.	Z> φ<		

- Utiliser les touches ◀, ▶pour sélectionner le paramètre à modifier et les touches ▲
 ▼ pour modifier la valeur du paramètre :
 - ➤ MODE → La touche virtuelle permet de définir le mode de mesure de l'instrument, qui peut être : L-N, L-L, L1-L2, CAL
 - ➢ Inom → la touche virtuelle permet de programmer la valeur actuelle nominale du dispositif de protection dans le champ : 1A ÷ 999A par paliers de 1A
 - > Lim \rightarrow la touche virtuelle permet de programmer la valeur limite maximale admissible de la chute de tension (ΔV %) pour la ligne principale testée
 - Z> d< → cette position permet d'effectuer la première mesure d'impédance Z1 (Offset). Dans ce cas, l'instrument mesurera l'impédance en amont du point de départ de la ligne principale testée en la prenant comme référence de départ
- 3. Sélectionner le mode CAL à l'aide des touches fléchées ▲, ▼ et calibrer les câbles de test ou le câble avec prise Shuko à l'aide de l'accessoire ZEROLOOP avant d'effectuer le test (voir § 6.7.2)
- 4. Brancher l'instrument au point de départ de la ligne principale testée (typiquement en aval d'un dispositif de protection) en fonction de la Fig. 37 ou Fig. 38 pour effectuer la première mesure d'impédance Z1 (Offset). Dans ce cas, l'instrument mesurera l'impédance en amont du point de départ de la ligne principale testée en la prenant comme référence de départ. La page-écran suivante (se référant à la mesure L-L) s'affiche

5.	Utiliser les touches ◀, ► et déplacer le curseur en	$\Delta V\%$	15/10 – 1	8:04	
	position " Z > ϕ <". Appuyer sur la touche GO/STOP de l'instrument pour démarrer le test. La page-écran suivante s'affiche à l'écran	ΔV° ZL-	% = - L = -	<u>c</u>	×ø∢ %
		FRÉQ. VL-PE=	= 50.00 = 223V	Hz VL-L=	387 V
		L-L	16A	4%	0.00Ω
		MODE	Inom	Lim.	Z>

6. Utiliser les touches ◀, ▶ et déplacer le curseur en position "Z> ϕ<". Appuyer sur la touche GO/STOP de l'instrument pour démarrer le test. Le résultat de la mesure Z1 (offset) est affiché sur l'écran au-dessus de la position "Z> ϕ<". Si la valeur de Z1 (offset) est <10Ω le résultat "OK" s'affiche et est automatique enregistré dans la mémoire tampon interne</p>

ſ	ΔV% 1	5/10 – 1	8:04	
Э				►Ø◄
a	ΔV%	% = -	%	6
a	71-	I = -	0)
Э	2 L	L –	2	2
S	FRÉQ.	= 50.00	Ηz	
	VL-PE=	223V	VL-L=	387 V
		0	4	
	L-L	16A	4%	1.48Ω
	MODE	Inom	Lim.	Z> φ<

- Brancher l'instrument au point d'extrémité de la ligne principale testée conformément aux Fig. 37 ou Fig. 38 pour mesurer l'impédance Z2 en fin de ligne. Noter la valeur Z1 (Offset) précédemment mesurée affichée sur l'écran
- Utiliser les touches ◄, ► et déplacer le curseur sur une position quelconque sauf "Z>φ<". Appuyer sur la touche GO/STOP de l'instrument pour mesurer l'impédance Z2 et effectuer la mesure de chute de tension ΔV%. Pendant toute cette phase, ne pas débrancher les câbles de mesure de l'instrument du système testé. En cas de résultat positif (valeur pourcentage maximale

de la chute de tension calculée selon § 12.11 < valeur limite programmée), l'instrument affiche le résultat "OK" ainsi que la fenêtre-vidéo ci contre qui contient la valeur de l'impédance de fin de ligne Z2 avec la valeur Z1 (Offset)

 En cas de résultat positif (valeur pourcentage maximale de la chute de tension calculée selon § 12.11 > valeur limite programmée), l'instrument affiche le résultat "NON OK" ainsi que la fenêtre-vidéo ci contre qui contient la valeur de l'impédance de fin de ligne Z2 avec la valeur Z1 (Offset)

r	ΔV% 1	5/10 – 1	8:04	
r	ΔV%	ý = 0	.4 %	×ø∢
~ ~	ZL-I	_ = 1	.57 Ω	2
I	FRÉQ. : VL-PE=	= 50.00I 223V	Hz VL-L= (387 V
,		0	K	
,	L-L	16A	4%	1.48Ω
	MODE	Inom	Lim.	Z>

е	ΔV% 1	5/10 - 1	8:04	
ır at nt ır	∆V% ZL-I	6 = 1 L = 5	9.5 % .97 <u>(</u>	▶ø ∢ %
	FRÉQ. VL-PE=	= 50.00l 223V	Hz VL-L=	387 V
		NON	OK	
	L-L	16A	4%	1.48Ω
	MODE	Inom	Lim.	Z> φ<

10. Appuyer sur la touche **SAVE** pour stocker le résultat du test dans la mémoire de l'instrument (voir § 7.1) ou sur la touche **ESC/MENU** pour quitter la fenêtre-vidéo sans enregistrer et revenir au menu principal

6.10.1. Situations anormales

3.

1. Si l'instrument mesure une fréquence supérieure à la limite maximale (63 Hz), il n'effectue pas le test et affiche une fenêtre-vidéo semblable à celle illustrée ci-contre.

ΔV% 1	15/10 – 1	8:04		
ΔV%	% = -	%	►ø ∢	
ZL-	N = -	Ω	2	
FRÉQ. > 63Hz VL-PE= 232V VL-N= 232V				
Fréquence hors gamme				
L-N	16A	4%	0.12Ω	
MODE	Inom	Lim.	Z>	

2. Si l'instrument mesure une tension L-N ou L-PE inférieure à la limite minimale (100V), il n'effectue pas le test et affiche une fenêtre-vidéo semblable à celle illustrée cicontre. Vérifier que le système testé soit alimenté.

$\Delta V\%$ 1	5/10 – 1	8:04			
Δ V %	% = -	%	►Ø◄		
ZL-	N = -	Ω	2		
FRÉQ.= 50.00 Hz VL-PE <100V VL-N<100V					
Tension <100V					
L-N	16A	4%	0.12Ω		
MODE	Inom	Lim.	Z>		

Si l'instrument détecte une tension L-L supérieure à la	$\Delta V\%$	15/10 – 1	8:04	
limite maximale (460 V), il n'effectue pas le test et affiche une fenêtre-vidéo semblable à celle illustrée ci-contre.	ΔV	% = -	9	▶ø∢
Vérifier la connexion des câbles de mesure.	ZL	- N = -	(2
	FRÉQ VL-PE	.= 50.00 = 242V	Hz VL-L >	460V
		Tension	>460V	
	L-L	16A	4%	0.12Ω
	MODE	Inom	Lim.	Z> φ<

Έ	ΔV% 1	15/10 – 1	8:04	
as le	ΔV%	% = -	%	, o
le	ZL-	N = -	Ω	2
	FRÉQ.= VL-PE :	= 50.00 l >265V	Hz VL-N >	265V
		Tension	>265V	
	L-N	16A	4%	0.12Ω
	MODE	Inom	Lim.	Z> φ<

4. Si l'instrument mesure une tension L-N ou L-P supérieure à la limite maximale (265V), il n'effectue pa le test et affiche une fenêtre-vidéo semblable à cell illustrée ci-contre. Vérifier la connexion des câbles d mesure.

5. Si l'instrument détecte une tension dangereuse sur le conducteur PE, il affiche la fenêtre d'avertissement illustrée ci-contre et bloque l'exécution des essais. Vérifier l'efficacité du conducteur PE et du système de terre

ΔV% 1	15/10 – 1	8:04		
ΔV%	% = -	%	, ⊳Ø⊲	
ZL-	N = -	Ω	2	
FRÉQ.= 50.00 Hz VL-PE= 232V VL-N= 232V				
Tension sur PE				
L-N	16A	4%	0.12Ω	
MODE	Inom	Lim.	Z>	

Si l'instrument détecte l'absence du signal à la borne B1 6. phase), il affiche la (conducteur de fenêtre d'avertissement illustrée ci-contre et bloque l'exécution des essais

7.

Δ V% 1	5/10 – 1	8:04			
ΔV%	% = -	%	ר∢ °		
ZL-	N = -	Ω	2		
FRÉQ.= 50.00 Hz VL-PE= 0V VL-N= 0V					
L manquant					
L-N	16A	4%	0.12Ω		
MODE	Inom	Lim.	Z>		

Si l'instrument détecte l'absence du signal à la borne B4	$\Delta V\%$	15/10 – 1	8:04	
(conducteur neutre), il affiche la fenêtre d'avertissement illustrée ci-contre et bloque l'exécution des essais	ΔV	'% = -	9	▶ø∢
	ZL	- N = -	(2
	FRÉG VL-PE	0.= 50.00 = 232V	Hz VL-N=	115V
		N man	quant	
	L-N	16A	4%	0.12Ω
	MODE	Inom	Lim.	Z> φ<

33	ΔV% 1	5/10 – 1	8:04	
nt				►ø∢
	ΔV%	% = -	%	, D
	71	NI _	0	
	ZL-	IN = -	12	
	FRÉQ.=	= 50.00 l	Hz	
	VL-PE=	115V	VL-N=	232V
		PE mar	nquant	
	L-N	16A	4%	0.12Ω
	MODE	Inom	Lim.	Z> φ<

8. Si l'instrument détecte l'absence du signal à la borne B (conducteur PE), il affiche la fenêtre d'avertissement illustrée ci-contre et bloque l'exécution des essais

9. Si l'instrument détecte que les conducteurs de phase L et le neutre N sont inversés, il n'effectue pas le test et affiche une fenêtre-vidéo semblable à celle illustrée cicontre. Tourner la fiche secteur ou vérifier la connexion des câbles de mesurage

	ΔV% 1	5/10 – 1	8:04	
	ΔV%	% = -	%	▶ø ∢ %
I	ZL-	N = -	(2
	FRÉQ.= VL-PE=	= 50.00 : 1V	Hz VL-N=	232V
		Inverse	er L-N	
	L-N	16A	4%	0.12Ω
	MODE	Inom	Lim.	Z> φ<

10. Si l'instrument détecte que les conducteurs de phase et $\Delta V\%$ 15/10 – 18:04 PE sont inversés, il n'effectue pas le test et affiche une fenêtre-vidéo semblable à celle illustrée ci-contre. Vérifier la connexion des câbles de mesure

∆ V % Z L - I FRÉQ.= VL-PE=	6 = - N = - = 50.00 232V	% <u>(</u> Hz VL-N=	2 1V
Inverser L-PE			
L-N	16A	4%	0.12Ω
MODE	Inom	Lim.	Z>

_

11.	Si l'instrument détecte un VL-PE, VL-N ou VN-PE >5V	$\Delta V\%$	15/10 – 18:04	4
	pendant l'opération d'étalonnage des aiguilles-sondes, il n'effectue pas le test et affiche une fenêtre-vidéo semblable à celle illustrée ci-contre. Vérifier la connexion des câbles de mesure	R L R N E FRÉG VL-PE CAL	- = N = P = Q.= 50.00 Hz E= 232V VL ension d'entre	- Ω - Ω - Ω N= 231V ée > 5V

N

7. STOCKAGE DES RESULTATS

L'instrument peut stocker jusqu'à 999 résultats de mesure. Les données peuvent être rappelées sur l'écran et supprimées à tout moment et il est possible d'associer jusqu'à un maximum de 3 niveaux de repères numériques mnémoniques relatifs au système, à la chaîne et au module PV (avec une valeur maximale de 250) pendant le stockage. Pour chaque niveau, il y a 20 noms de marqueurs qui peuvent être personnalisés par l'utilisateur via une connexion PC avec le logiciel de gestion fourni. Vous pouvez également saisir un commentaire associé à chaque mesure.

7.1. STOCKAGE DES MESURES

- 4. Appuver sur la touche **SAVE/ENTER** avec le résultat de SAVE la mesure à l'écran. La page-écran sur le côté s'affiche. Il Mesure contient :
 - ≻ L'élément « Mesure » qui identifie le premier emplacement de mémoire disponible
 - Le premier repère (par exemple : « Système ») auquel il est possible d'associer une valeur numérique comprise entre 1 ÷ 250
 - Le deuxième repère (par exemple : « Chaîne ») auquel il est possible d'associer une valeur numérique comprise entre 0 (- - -) \div 250
 - > Le troisième repère (par exemple : « Module ») auquel il est possible d'associer une valeur numérique comprise entre 0 (- - -) ÷ 250
 - L'élément « Commentaire » associé à la mesure dans laquelle un texte de 30 caractères maximum peut être saisi.
- 5. Utiliser les touches fléchées ◀ ou ► pour sélectionner le SAVE repère et les touches fléchées (▲,▼) pour modifier l'étiquette de la valeur numérique associée (ex : « Zone ») parmi celles disponibles ou personnalisables par l'utilisateur (20 noms maximum)
- 6. Sélectionner l'élément « Commentaire » et appuyer sur la touche SAVE/ENTER pour saisir le texte souhaité. La page-écran suivante, avec clavier virtuel, s'affiche :
- 15/10 – 18:04 Mesure 003 Zone 001 Chaîne - - -Module Commentaire : 30 caractères maximum
- 7. Utiliser les touches fléchées ◀ ou ▶ pour déplacer le SAVE 15/10 - 18:04 Clavier COMMENTAIRE Q W E R T Y U I **O** P <=> # ASDFGHJKL+-*/& Z X C V B N M . , ; : ! ? _ ÄÖÜßµÑCÁÍÓÚÜ¿i ÁÈÉÙÇÄËÏÖÜÆØÅ CANC FIN
- curseur sur le caractère à sélectionner et appuyer sur la touche SAVE/ENTER pour entrer 8. Déplacer le curseur sur la position « CANC » et appuyer
- sur la touche SAVE/ENTER pour effacer le caractère 01234567890()% sélectionné
- 9. Déplacer le curseur sur la position « FIN » et appuyer sur la touche **SAVE/ENTER** pour confirmer le commentaire écrit et revenir à la page-écran précédente.
- 10. Appuyer sur la touche SAVE/ENTER pour confirmer la sauvegarde de la mesure ou sur ESC/MENU pour quitter sans sauvegarder

-MAT

7.2. RAPPELER LES DONNEES SUR L'ECRAN ET EFFACER LA MEMOIRE

- Positionner le curseur sur l'élément MEM à l'aide des touches fléchées (▲,▼) et confirmer avec ENTER. La page-écran sur le côté s'affiche à l'écran. Dans la pageécran il y a :
 - Le numéro de l'emplacement de la mémoire où la mesure est enregistrée
 - La date à laquelle la mesure a été enregistrée
 - Le type de mesure enregistrée
 - Le total des mesures enregistrées pour chaque écran et la mémoire disponible restante

MEM	15/10 –	18:04	
Ν.	Da	te	Туре
001	14/01,	2021/	RPE
002	15/01	2021/	MΩ
003	15/01/	2021/	LoΩ
004	15/01	2021/	LoZ
005	16/01	2021/	Auto
006	17/01	2021	LOO P
007	19/01	2021	Δ V %
Tot : 007		Libre :	992
$\uparrow \downarrow$	$\uparrow \downarrow$	All	
Rec	Pag	CANC	

- Utiliser les touches fléchées (▲,▼) pour sélectionner la mesure à rappeler sur l'écran
- Appuyer sur la touche SAVE/ENTER pour afficher la mesure enregistrée. Appuyer sur la touche ESC/MENU pour revenir à la page-écran précédente
- 5. Sélectionner l'option "CANC" pour supprimer tout le contenu de la mémoire. La page-écran suivante s'affiche à l'écran :
- Appuyer sur la touche SAVE/ENTER pour confirmer la MEM 15/1 suppression des données. Le message « Mémoire vide » est affiché à l'écran
- Appuyer sur la touche MENU/ESC pour quitter et revenir sur le menu général.

MEM	15/02 - 18:	04	
Ν.	Da	te	Туре
001	14/01/	2021/	RPE
002	15/01/	2021/	MΩ
003	15/01	2021/	LoΩ
004	15/01	2021/	LoZ
005	16/01/	2021/	Auto
006	17/01	2021/	LOO P
007	19/01/	2021/	ΔV %
Tot : 00	07	Libre	: 992
$\uparrow \downarrow$	$\uparrow \downarrow$	All	
Rec	Pag	CANC	:

MEM	15/10 – 18:04	
		2
	EFFACER TOUT	!
	ENTED / ESC	
	ENTER / ESC	
	MEM	MEM 15/10-18:04 EFFACER TOUT ENTER / ESC

8. CONNEXION DE L'INSTRUMENT A UN PC

ATTENTION

- La connexion entre le PC et l'instrument se fait par le câble C2006
- Pour transférer des données vers un PC, le logiciel de gestion doivent être installés au préalable dans le PC
- Avant d'établir la connexion, il est nécessaire de sélectionner le port utilisé et le débit en bauds correct (57600 bps) sur le PC. Pour définir ces paramètres, lancer le logiciel de gestion fourni et consulter l'aide en ligne du programme
- Le port sélectionné ne doit pas être occupé par d'autres appareils ou applications tels que souris, modem, etc. Si nécessaire, fermer les processus en cours d'exécution à partir de la fonction Gestionnaire des tâches de Windows
- Le port optique émet un rayonnement LED invisible. N'observez pas directement avec des instruments optiques. Appareil à LED de classe 1M selon la norme IEC/EN60825-1

Pour transférer des données vers un PC, suivre les étapes ci-dessous :

- 1. Allumer l'instrument en appuyant sur la touche ON/OFF
- 2. Connecter l'instrument à un PC en utilisant le câble optique/USB C2006 fourni
- 3. Appuyer sur la touche **ESC/MENU** pour ouvrir le menu principal
- 4. Utiliser les touches fléchées (▲,▼) pour sélectionner l'élément « PC » afin d'entrer en mode de transfert de données et confirmer avec SAVE/ENTER

MENU		15/10 – 18:04	l	
LoZ	:	Z haute précision		
1,2,3	:	Séq. Phases		
ΔV%	:	Chute de tens.		
SET	:	Paramètres		
MEM	:	Données stockées		
РC		Transfert de données		
		▼		

5. L'instrument fournit la page-écran suivante :

6. Utiliser les commandes du logiciel de gestion pour activer le transfert de données (voir l'aide en ligne du programme)

9. MAINTENANCE

9.1. ASPECTS GENERAUX

- Pour son utilisation et son stockage, suivre attentivement les recommandations et les instructions indiquées dans ce manuel afin d'éviter tout dommage ou danger pendant l'utilisation
- Ne pas utiliser l'instrument dans des endroits ayant un taux d'humidité et/ou une température élevée. Ne pas exposer directement en plein soleil
- Si vous prévoyez de ne pas l'utiliser pendant une longue période, retirez les piles pour éviter qu'elles ne fuient de liquides qui pourraient endommager les circuits internes de l'instrument

9.2. REMPLACEMENT DES PILES

Lorsque le symbole de batterie faible "-" apparaît sur l'écran LCD, remplacer les piles internes.

ATTENTION

Seuls des techniciens qualifiés peuvent effectuer cette opération. Avant de ce faire, s'assurer d'avoir enlevé tous les câbles des bornes d'entrée.

- 1. Éteindre l'instrument en appuyant longuement sur le bouton de mise en marche
- 2. Retirer les câbles des bornes d'entrée
- 3. Dévisser la vis de fixation du couvercle du compartiment des piles et l'extraire
- 4. Retirer toutes les piles du compartiment à piles et les remplacer seulement par des piles neuves du type approprié (voir § 10.3) en respectant les polarités indiquées
- 5. Remettre le couvercle du compartiment à piles en place et le fixer avec la vis
- 6. Ne pas jeter les piles usagées dans l'environnement. Utiliser les conteneurs spécialement prévus pour leur élimination

9.3. NETTOYAGE DE L'INSTRUMENT

Utiliser un chiffon doux et sec pour nettoyer l'instrument. Ne jamais utiliser de solvants, de chiffons humides, d'eau, etc.

9.4. FIN DE LA DUREE DE VIE

AVERTISSEMENT : le symbole représenté indique que l'équipement, ses accessoires et les piles internes doivent être collectés séparément et traités correctement

10. SPECIFICATIONS TECHNIQUES

Incertitude calculé comme ±[%lecture + (num. dgt) * résolution] à 23°C ± 5°C, <80%RH **10.1. CARACTERISTIQUES TECHNIQUES**

Tension A	СТ	RMS
-----------	----	-----

Échelle [V]	Résolution [V]	Incertitude
15 ÷ 460	1	±(3%lecture + 2 dgt)

Fréquence

Échelle [Hz]	Résolution [Hz]	Incertitude	
47.50 ÷ 52.50 / 57.00 ÷ 63.00	0.01	$\pm (0.1\%$ lecture+1chiffre)	

Continuité conducteur de protection (RPE)

Échelle [Ω]	Résolution [Ω]	Incertitude
0.00 ÷ 9.99	0.01	
10.0 ÷ 99.9	0.1	±(5.0% lecture + 3 dgt)
100 ÷ 1999	1	

Courant d'essai : Courant de test généré : >200mA DC jusqu'à 5 Ω (y compris les aiguilles-sondes de mesure) résolution 1mA, plage 0 ÷ 250mA ; Tension à vide : 4 < V₀ < 24VDC message d'erreur en raison de la tension sur les entrées > 10V

Protection sur les entrées : messa Résistance d'isolation (MQ)

Tension d'essai [V]	Échelle [MΩ]	Résolution [MΩ]	Incertitude	
	0.01 ÷ 9.99	0.01	1/2.00/ lo oturo 12 dat)	
50	10.0 ÷ 49.9	0.1	±(2.0%)ecture+20gt)	
	50.0 ÷ 99.9	0.1	±(5.0%lecture+2dgt)	
	0.01 ÷ 9.99	0.01	$1/2 0^{0/1}$ locture 1 2 dat	
100	10.0 ÷ 99.9	0.1	±(2.0%)ecture+20gt)	
	100 ÷ 199	1	±(5.0%lecture+2dgt)	
250	0.01 ÷ 9.99	0.01		
	10.0 ÷ 199.9	0.1	±(2.0%lecture+2dgt)	
	200 ÷ 249	1		
	250 ÷ 499	Ι	±(5.0%lecture+2dgt)	
	0.01 ÷ 9.99	0.01		
500	10.0 ÷ 199.9	0.1	±(2.0%lecture+2dgt)	
500	200 ÷ 499	1		
	500 ÷ 999	Ι	±(5.0%lecture+2dgt)	
	0.01 ÷ 9.99	0.01		
1000	10.0 ÷ 199.9	0.1	±(2.0%lecture+2dgt)	
	200 ÷ 1999 1			
Tension circuit ouvert	tension d'essai nominale -0% +10%. Co	urant de court-circuit<6.0 mA	pour chaque tension d'essai	

Courant nominal de mesure : Protection sur les entrées : tension d'essai nominale -0% +10%; Courant de court-circuit<6.0 mA pour chaque tension d'essai >1mA su 1k Ω x Vnom (50V, 100V, 250V, 1000V), >2.2mA con 230k Ω @ 500V message d'erreur en raison de la tension sur les entrées > 30V

Impédance Ligne/Loop (Phase-Phase, Phase-Neutre, Phase-PE)

Échelle [Ω]	Résolution [Ω]	Incertitude (*)
0.01 ÷ 9.99	0.01	$\pm (5\%)$ (poturo 1.2 dat)
10.0 ÷ 199.9	0.1	$\pm(5\%$ lecture + 3 dgt)

(*) 0.1m Ω dans le champ 0.1 ÷ 199.9m Ω (avec accessoire en option IMP57)

 Courant d'essai maximal :
 3.31A (@ 265V) ; 5.71A (@ 457V) ; Tension P-N/P-P: (100V ÷265V) / (100V ÷460V) ; 50/60Hz ±5%

 Types de protection :
 MCB (B, C, D, K), Fusibles (aM, gG, BS882-2,BS88-3, BS3036, BS1362)

Courant de première panne –Systèmes IT

Échelle [mA]	Résolution [mA]	Incertitude
0.1 ÷ 0.9	0.1	\pm (5% lecture +1 dgt)
1 ÷ 999	1	±(5% lecture + 3 dgt)

Tension limite de contact (ULIM) : 25V, 50V

Vérifier les protections différentielles (RCD) du type emboîté

Type de différentiel (RCD) :	AC (~), A/F (~), B/B+(==*), CCID (~, Nation USA), General (G), Selective (S)
Systèmes Monophasés (L-N-PE)	
Échelle Tension P-PE, P-N:	100V ÷265V RCD type AC, A/F, B/B+ et CCID (I∆N ≤ 100mA)
	190V ÷ 265V RCD type B/B+ (I∆N = 300mA)
Échelle Tension N-PE :	<10V
Systèmes Biphasés (retard de pha	ase VL1-PE, VL2-PE = 180° ou retard de phase VL1-PE, VL2-PE = 120°)
Échelle Tension L1-PE, L1-L2:	100V ÷265V RCD type AC, A/F, B/B+ et CCID (I∆N ≤100mA)
Échelle Tension L2-PE:	0V÷265V RCD type AC, A/F
	0V÷min[(VL1-PE-100V) et (VL1-L2-100V), RCD type B/B+ (I∆N ≤100mA)
Courant d'intervention (I∆N):	6mA,10mA, 30mA, 100mA, 300mA, 500mA, 650mA, 1000mA
Fréquence :	$50/60Hz \pm 5\%$
Courant d'intervention différen	itiels du type emboîté - (seulement RCD type Général)

Type RCD	IAN	Échelle I∆ _N [mA]	Résolution [mA]	Incertitude	
CCID	5mA, 20mA	(0.2 ÷ 1.3) I _{∆N}		0% 110% Lu	
AC, A/F, B/B+	6mA,10mA		< 0.11	- 0%, +10%1AN	
AC, A/F, B/B+	30mA ≤I∆N ≤300mA	(0.2 ÷ 1.1) I _{∆N}	\leq 0. HAN	00/ 150/1	
AC, A/F	500mA ≤I∆N ≤650mA			- 0%, +3%IAN	

Durée mesure temps d'intervention RCD emboîtés - Systèmes TT/TN

		x 1/2	2		x 1		x 5	Α	UTO			AUTO)+
	١	G	S	G	S	G	S	G	S	G	S	G	S
5mA	AC A/F B/B+ CCID			999						310			
6mA	AC A/F B/B+ CCID	999 999 999	999 999 999	999 999 999	999 999 999	50 50	150 150	\checkmark	✓ ✓	310 310 310		\rightarrow \rightarrow	
10mA	AC A/F B/B+ CCID	999 999 999	999 999 999	999 999 999	999 999 999	50 50	150 150	\checkmark	✓ ✓	310 310 310		\rightarrow \rightarrow	
20mA	AC A/F B/B+ CCID			999						310			
30mA	AC A/F B/B+ CCID	999 999 999	999 999 999	999 999 999	999 999 999	50 50	150 150	\checkmark	✓ ✓	310 310 310		\rightarrow \rightarrow	
100mA	AC A/F B/B+ CCID	999 999 999	999 999 999	999 999 999	999 999 999	50 50	150 150	\checkmark	√ √	310 310 310			
300mA	AC A/F B/B+ CCID	999 999 999	999 999 999	999 999 999	999 999 999	50 50	150 150	\rightarrow \rightarrow	√ √	310 310 310			
500mA 650mA	AC A/F B/B+ CCID	999 999	999 999	999 999	999 999	50	150	~	✓	310 310			
1000mA	AC A/F B/B+ CCID	999 999	999 999	999 999									

Tableau des durées de mesure du temps d'intervention [ms] - Résolution :1ms, Précision : ±(2.0%lecture + 2dgt) REMARQUE : les RCD de type CCID sont disponibles pour nation = USA et systèmes TN

	x 1/2		/2	x 1		x 5		AUTO				AUTO+	
_	١	G	S	G	S	G	S	G	S	G	S	G	S
6mA 10mA 30mA	AC A/F B/B+	999 999 999	999 999 999	999 999 999	999 999 999	50 50	150 150	√ ✓	✓✓	310 310 310		× ×	
100mA 300mA	AC A/F B/B+	999 999 999	999 999 999	999 999 999	999 999 999	50 50	150 150	\checkmark	✓✓	310 310 310			
500mA 650mA	AC A/F B/B+	999 999	999 999	999 999	999 999	50	150	✓ ✓		310 310			
1000mA	AC A/F B/B+	999 999	999 999	999 999	999 999								

Durée mesure temps d'intervention RCD emboîtés - Systèmes IT

Tableau des durées de mesure du temps d'intervention [ms] - Résolution :1ms, Précision : ±(2.0%lecture + 2dgt)

Vérification des protections différentielles RCD type DD

Type de différentiel (RCD):	Type DD (conforme à la norme IEC62955), Général (G)
Systèmes Monophasés (L-N-PE)	
Échelle Tension L-PE, L-N:	100V÷265V
Échelle Tension N-PE:	<10V
Systèmes Biphasés (retard de phase VL1-PE,	VL2-PE = 180° ou retard de phase VL1-PE, VL2-PE = 120°)
Échelle Tension L1-PE, L1-L2:	100V÷265V
Échelle Tension L2-PE:	0V÷min[(VL1-PE-100V) et (VL1-L2-100V)]
Courants d'intervention nominaux (IAN):	6mA
Fréquence :	$50/60Hz \pm 5\%$

Courant d'intervention RCD-DD 🚽 - (seulement pour RCD Général)

Type RCD	IΔN	Échelle I∆ _N [mA]	Résolution [mA]	Incertitude
DD	6mA	(0.2 ÷ 1.1) I _{∆N}	$\leq 0.1 I_{\Delta N}$	- 0%, +10%I _{∆N}

Temps d'intervention RCD-DD x1 - (seulement pour RCD Général)

Type RCD	IΔN	Échelle [ms]	Résolution [ms]	Incertitude
DD	6mA	10000	1	±(2%lect + 2dgts)

Résistance globale à la terre sans intervention RCD (Ra +)

Échelle Tension P-PE, P-N:	100V ÷ 265V
Échelle Tension N-PE :	<10V
Fréquence:	$50/60Hz \pm 5\%$

Résistance globale à la terre systèmes avec Neutre (3 fils) - (RCD 30mA ou supérieur)

Échelle [Ω]	Résolution [Ω]	Incertitude
0.05 ÷ 9.99	0.01	
10.0 ÷ 199.9	0.1	\pm (5%)ecture +8dgt)

Résistance globale à la terre dans les systèmes avec Neutre (3 fils) - (RCD 6mA et 10mA)

Échelle [Ω]	Résolution [Ω]	Incertitude
0.05 ÷ 9.99	0.01	
10.0 ÷ 199.9	0.1	\pm (5%)ectures +30dgt)

Résistance globale à la terre dans les systèmes sans Neutre (2 fils) - (RCD 30 mA ou supérieur)

Échelle [Ω]	Résolution [Ω]	Incertitude
0.05 ÷ 9.99	0.01	
10.0 ÷ 99.9	0.1	±(5%lecture +8dgt)
100 ÷ 1999	1	

Résistance globale à la terre dans les systèmes sans Neutre (2 fils) - (RCD 6mA et 10mA)

Échelle [Ω]	Résolution [Ω]	Incertitude
0.05 ÷ 9.99	0.01	
10.0 ÷ 99.9	0.1	\pm (5% lectures +30 dgt)
100 ÷ 1999	1	

Tension de contact (mesurée lors du test RCD Ra +)

Échelle [V]	Résolution [V]	Incertitude
0 ÷ Ut LIM	0.1	-0%, +(5.0%lecture + 3V)

Essai séquence des phases à 1 borne

Échelle tension P-N, P-PE[V]	Plage fréquence
100 ÷ 265	50 Hz/ 60 Hz \pm 5%

La mesure se fait seulement par contact direct avec des parties métalliques sous tension (et non pas sur haine isolante)

10.2. NORMES DE REFERENCE

Sécurité :	IEC/EN61010-1,IEC/EN61010-2-030,IEC/EN61010-2-033
	IEC/EN61010-2-034, IEC/EN61557-1
EMC :	IEC/EN61326-1
Documentation technique:	IEC/EN61187
Sécurité accessoires:	IEC/EN61010-031
Isolation:	double isolation
Degré de pollution:	2
Altitude d'utilisation:	2000m
Catégorie de mesure :	CAT IV 300V à la terre, max 415V entre les entrées
RPE :	IEC/EN61557-4, BS7671 17th ed., AS/NZS3000/3017
ΜΩ:	IEC/EN61557-2, BS7671 17th ed., AS/NZS3000/3017
RCD :	IEC/EN61557-6 (sur systèmes Phase-Neutre-Terre)
RCD-DD :	IEC62955
RCD CCID:	UL2231-2
LOOP P-P, P-N, P-PE :	IEC/EN61557-3, BS7671 17th ed., AS/NZS3000/3017
Multifonction :	IEC/EN61557-10, BS7671 17th ed., AS/NZS3000/3017
Courant de court-circuit :	EN60909-0

10.3. CARACTERISTIQUES GENERALES

Caractéristiques mécaniques

Dimensions (L x La x H) :	225 x 165 x 75mm
Poids (piles incluses) :	1,2kg
Protection mécanique :	IP40

Alimentation

Type de batterie : 6 x 1.5 V alcalin type AA IEC LR06 MN1500 ou

	6 x 1.2 V rechargeable NiMH type AA
Indication pile déchargée :	symbole « 🖵 » à l'écran
Autonomie des piles :	> 500 essais pour chaque fonction
Auto Power OFF :	après 10 minutes d'inutilisation (si activé)

Divers

Afficheur :	LCD noir/blanc graphique LCD, 320x240pxl
Mémoire :	999 emplacements de mémoire, 3 niveaux de marqueur
Connexion PC :	port optique/USB

10.4. ENVIRONNEMENT

10.4.1. Conditions environnementales d'utilisation

Température de référence :	23°C ± 5°C
Température d'utilisation :	$0^{\circ}C \div 40^{\circ}C$
Humidité relative admise :	<80%RH
Température de stockage :	-10°C ÷ 60°C
Humidité de conservation :	<80%RH

Cet instrument est conforme aux conditions requises de la directive européenne sur la basse tension 2014/35/CE (LVD) et de la directive CEM 2014/30/CE Cet instrument est conforme aux exigences prévues par la directive européenne 2011/65/CE (RoHS) et par la directive européenne 2012/19/EU (DEEE)

10.5. ACCESSOIRES Voir packing list

11.ASSISTANCE

11.1. CONDITIONS DE GARANTIE

Cet instrument est garanti contre tout défaut de matériel ou de fabrication, conformément aux conditions générales de vente. Pendant la période de garantie, toutes les pièces défectueuses peuvent être remplacées, mais le fabricant se réserve le droit de réparer ou de remplacer le produit. Si l'instrument doit être renvoyé au service après-vente ou à un revendeur, le transport est à la charge du client. Cependant, l'expédition devra être préalablement convenue d'un commun accord. Le produit retourné doit toujours être accompagné d'un rapport qui établit les raisons du retour de l'instrument. Pour l'expédition, n'utiliser que l'emballage d'origine. Tout dommage engendré par l'utilisation d'emballages non d'origine sera débité au Client. Le fabricant décline toute responsabilité pour les dommages provoqués à des personnes ou à des biens.

La garantie n'est pas appliquée dans les cas suivants :

- Réparation et/ ou remplacement d'accessoires ou de pile (non couverts par la garantie)
- Réparations pouvant être nécessaires en raison d'une mauvaise utilisation de l'instrument ou son utilisation avec des appareils non compatibles
- Réparations pouvant être nécessaires en raison d'un emballage inapproprié
- Réparation pouvant être nécessaires en raison d'interventions réalisées par un personnel non autorisé
- Modifications réalisées sur l'instrument sans l'autorisation expresse du fabricant
- Utilisation non présente dans les caractéristiques de l'instrument ou dans le manuel d'utilisation.

Le contenu de ce manuel ne peut être reproduit sous aucune forme sans l'autorisation du fabricant.

Nos produits sont brevetés et leurs marques sont déposées. Le fabricant se réserve le droit de modifier les caractéristiques des produits ou les prix, si cela est dû à des améliorations technologiques

11.2. ASSISTANCE

Si l'instrument ne fonctionne pas correctement, avant de contacter le service d'assistance, veuillez vérifier les piles et les câbles et les remplacer si nécessaire. Si l'instrument ne fonctionne toujours pas correctement, vérifier que la procédure d'utilisation est correcte et qu'elle correspond aux instructions indiquées dans ce manuel. Si l'instrument doit être renvoyé au service après-vente ou à un revendeur, le transport est à la charge du client. Cependant, l'expédition devra être préalablement convenue d'un commun accord. Le produit retourné doit toujours être accompagné d'un rapport qui établit les raisons du retour de l'instrument. Pour l'envoi, n'utiliser que l'emballage d'origine ; tout dommage causé par l'utilisation d'emballages non originaux sera débité au client.

12. **ANNEXE THEORIQUES**

12.1. CONTINUITE DES CONDUCTEURS DE PROTECTION But de l'essai

Établir la continuité des :

- Conducteurs de protection (PE), conducteurs équipotentiels principaux (EQP), conducteurs équipotentiels secondaires (EQS) dans les systèmes TT et TN-S
- Conducteurs de neutre avec fonction de conducteurs de protection (PEN) dans les systèmes TN-C.

Cet essai instrumental doit être précédé d'un contrôle visuel visant à constater l'existence des conducteurs de protection et équipotentiels de couleur jaune-vert et que les sections utilisées sont conformes aux prescriptions de la norme.

Parties de l'installation à contrôler

Raccorder l'une des aiguilles-sondes au conducteur de protection de la prise de force motrice et l'autre au nœud équipotentiel de l'installation de mise à la terre.

Raccorder l'une des aiguilles-sondes à la masse étrangère (dans ce cas, il s'agit du tube de l'eau) et l'autre au système de mise à la terre en utilisant, par exemple, le conducteur de protection présent dans la prise de force motrice la plus proche.

Fig. 39 : Exemples de mesures de continuité des conducteurs

Vérifier la continuité entre :

- Pôles de mise à la terre de toutes les prises à fiche et collecteur ou nœud de mise à la terre
- Bornes de terre des appareils de classe I (chaudière etc.) et collecteur ou nœud de mise à la terre
- Masses étrangères principales (tubes d'eau, gaz etc.) et collecteur ou nœud de mise à la terre
- Masses étrangères supplémentaires entre elles et vers la borne de mise à la terre.

Valeurs admissibles

Les normes ne nécessitent pas de mesurer la résistance de continuité et la comparaison de ce qui est mesuré avec des valeurs de seuil. Un essai de la continuité est exigé et il est demandé que l'instrument de mesure signale à l'opérateur si l'essai n'est pas exécuté avec un courant d'au moins 200 mA et une tension à vide comprise entre 4 et 24 V. Les valeurs de résistance peuvent être calculées en fonction des sections et des longueurs des conducteurs contrôlés. En général, pour des valeurs de guelgues ohms, l'essai peut être considéré comme passé avec succès

12.2. RESISTANCE D'ISOLATION

But de l'essai

Vérifier que la résistance d'isolation de l'installation soit conforme aux dispositions de la norme applicable. Cet essai doit être effectué avec le circuit contrôlé hors tension et en coupant les éventuelles charges alimentées par ce dernier.

Valeurs admissibles

Les valeurs de la tension de mesure et de la résistance minimale d'isolation sont indiquées dans le tableau suivant:

Tension nominale du circuit [V]	Tension d'essai [V]	Résistance d'isolation [MΩ]	
SELV et PELV *	250	≥ 0.250	
Jusqu'à 500 V compris, à l'exception des circuits ci-dessus	500	≥ 1.000	
au-dessus de 500 V	1000	≥ 1.000	
* Les termes SELV et PELV remplacent d	lans la nouvelle version	de la réglementation	les

* Les termes SELV et PELV remplacent, dans la nouvelle version de la réglementation, les anciennes définitions « très basse tension de sécurité » ou « fonctionnelle »

Tableau 4 : Types d'essai les plus courants, mesures de la résistance d'isolation

Si le système comprend des dispositifs électroniques, il faut débrancher ces derniers du système-même pour éviter tout dommage. Si cela n'est pas possible, exécuter seulement l'essai entre les conducteurs actifs (qui, dans ce cas, doivent être branchés ensemble) et la terre.

En présence d'un circuit très étendu, les conducteurs qui sont adjacents constituent une capacité que l'instrument doit charger pour pouvoir obtenir une mesure correcte ; dans ce cas, il est conseillé de maintenir la touche de démarrage de mesure enfoncée (si on exécute l'essai en mode manuel) jusqu'à ce que le résultat se soit stabilité.

L'indication **« > fond d'échelle »** indique que la résistance d'isolation mesurée par l'instrument est supérieure au seuil maximal de résistance mesurable ; bien évidemment, ce résultat est largement supérieur aux limites minimales du tableau réglementaire susmentionné ; par conséquent, <u>l'isolation à cet endroit devrait être jugée comme conforme à la norme</u>.

12.2.1. Mesure Indice de polarisation (PI)

Le but de ce test de diagnostic est d'évaluer l'influence des effets depolarisation. Quand une tension élevée est appliquée à un isolant, les dipôles électriques de l'isolant s'alignent dans la direction du champ électrique appliqué. Ce phénomène est appelé <u>polarisation</u>. Sous l'effet des molécules polarisées, un courant de polarisation (absorption) est généré et abaisse la valeur globale de la résistance d'isolation.

Le paramètre **PI** est le rapport entre la valeur de résistance d'isolation mesurée après 1 minute et celle mesurée après 10 minutes. La tension d'essai est maintenue pour toute la durée du test et à la fin de ce dernier, l'instrument fournit la valeur du rapport :

 $PI = \frac{Riso (10 \text{ min})}{Riso (1 \text{ min})}$

Quelques valeurs de référence :

Valeur Pl	Condition d'isolation
de 1.0 à 1.25	Pas acceptable
de 1.4 à 1.6	Bon
>1.6	Excellent

12.2.2. Rapport d'absorption diélectrique (DAR)

Le paramètre **DAR** est le rapport entre la valeur de résistance d'isolation mesurée après 30s et celle mesurée après 1 minute. La tension d'essai est maintenue pour toute la durée du test et à la fin de ce dernier, l'instrument fournit la valeur du rapport :

$$DAR = \frac{Riso (1 \min)}{Riso (30s)}$$

Quelques valeurs de référence :

Valeur DAR	Condition d'isolation	
< 1.0	Dangereux	
de 1.0 à 2.0	discutable	
de 2.0 à 4.0	Bon	
> 4.0	Excellent	

12.3. CONTROLE DE LA SEPARATION DES CIRCUITS

<u>Définitions</u>

Un système **SELV** est un système de catégorie zéro ou un système de sécurité à très basse tension caractérisé par une alimentation provenant d'une source autonome (ex. batterie de piles, petit générateur) ou d'un dispositif de sécurité (ex. transformateur de sécurité), par la séparation de protection des autres systèmes électriques (isolation double ou renforcée ou blindage métallique mis à la terre) et par l'absence de points mis à la terre (isolés de la terre).

Un système **PELV** est un système de catégorie zéro ou un système de protection à très basse tension caractérisé par une alimentation électrique provenant d'une source autonome (par exemple une pile, un petit générateur) ou d'un système de sécurité (par exemple un transformateur de sécurité), par la séparation de protection vers d'autres systèmes électriques (isolation double ou renforcée ou blindage métallique mis à la terre) et, contrairement aux systèmes **SELV**, par la présence de points mis à la terre (non isolé de la terre).

Un système à **séparation électrique** est un système caractérisé par une alimentation électrique provenant d'un transformateur d'isolation ou d'une source autonome ayant des caractéristiques équivalentes (par exemple, groupe moteur générateur), par une séparation de protection par rapport à d'autres systèmes électriques (isolation non inférieure à celle du transformateur d'isolation), par une séparation de protection par vers la terre (isolation non inférieure à celle du transformateur d'isolation).

<u>But de l'essai</u>

L'essai, à effectuer si la protection est réalisée par séparation (SELV ou PELV ou séparation électrique), doit vérifier que la résistance d'isolation mesurée comme décrit cidessous (selon le type de séparation) est conforme aux limites données dans le tableau relatif aux mesures d'isolation.

Parties de l'installation à contrôler

- Système **SELV** (Safety Extra Low Voltage) :
 - Mesurer la résistance entre les parties actives du circuit testé (séparé) et les parties actives des autres circuits
 - Mesurer la résistance entre les parties actives du circuit testé (séparées) et la mise à la terre.
- Système **PELV** (Protective Extra Low Voltage) :
 - ✓ Mesurer la résistance entre les parties actives du circuit testé (séparé) et les parties actives des autres circuits.

Séparation électrique :

- Mesurer la résistance entre les parties actives du circuit testé (séparé) et les parties actives des autres circuits
- Mesurer la résistance entre les parties actives du circuit testé (séparées) et la mise à la terre.

Valeurs admissibles

L'essai donne un résultat positif lorsque la résistance d'isolation a des valeurs supérieures ou égales à celles indiquées dans Tableau 4.

EXEMPLE DE CONTRÔLE DE LA SÉPARATION ENTRE CIRCUITS ÉLECTRIQUES

Fig. 40 : Mesures de séparation entre les circuits d'une installation

12.4. TEST SUR INTERRUPTEURS DIFFERENTIELS (RCD)

<u>But de l'essai</u>

Vérifier que les dispositifs de protection différentielle générale (G) et sélective (S) ont été installés et ajustés correctement et qu'ils conservent leurs caractéristiques dans le temps. Le contrôle doit garantir que l'interrupteur différentiel intervient à un courant n'excédant pas son courant nominal de fonctionnement IdN et que le temps de déclenchement satisfait, le cas échéant, aux conditions suivantes:

- Qu'il ne dépasse pas le temps maximum prescrit par la norme dans le cas des interrupteurs différentiels de type général (comme décrit dans la Tableau 5)
- Qu'il soit compris entre le temps d'intervention minimum et maximum dans le cas des commutateurs différentiels de type Sélectif (comme décrit dans la Tableau 5)

L'essai de l'interrupteur différentiel effectué avec la touche d'essai sert à s'assurer que «l'effet colle» ne compromet pas le fonctionnement du dispositif resté inactif pendant une période prolongée. Cet essai est exécuté uniquement pour garantir le fonctionnement mécanique du dispositif et il n'est pas suffisant pour pouvoir déclarer la conformité avec la réglementation du dispositif à courant différentiel. Une enquête statistique a révélé que la vérification avec la touche d'essai des interrupteur effectué une fois par mois réduit de moitié le taux de panne de ces derniers ; cependant, cet essai identifie uniquement 24% des interrupteurs différentiels défectueux.

Parties de l'installation à contrôler

Tous les différentiels doivent être testés quand ils sont installés. Dans les installations à basse tension, il est conseillé d'exécuter cet essai, fondamental afin de garantir un niveau de sécurité correct. Dans les locaux à usage médical, ce contrôle doit être effectué régulièrement sur tous les interrupteurs différentiels comme l'exige les normes.

Valeurs admissibles

Deux essais doivent être effectués sur chaque RCD du type emboîté (STD) : un avec un courant de fuite à la terre qui commence de manière synchronisée avec la demi-onde positive de la tension (0°) et un avec un courant de fuite à la terre qui commence avec la demi-onde négative de la tension (180°). Le résultat indicatif est le temps le plus élevé. L'essai à ½IdN ne doit, en aucun cas, causer l'intervention du différentiel.

Type de différentiel	ldN x 1	ldN x 2	ldN x 5	Description
Général	0.3s	0.15s	0.04s	Temps d'intervention max en secondes
Sélectif S	0.13s	0.05s	0.05s	Temps d'intervention min en secondes
	0.5s	0.20s	0.15s	Temps d'intervention max en secondes

Tableau 5 : Temps d'intervention pour RCD du type emboîté Généraux et Sélectifs

Temps d'intervention conformément à la norme AS/NZS 3017 (**)

		½ l∆n (*)	l∆n	5 x l∆n	
Type RCD	ldN [mA]	t∆ [ms]			Notes
I	≤10		2	40	
II	>10 ≤ 30		200	0 40	Tampa d'intervention maximum
III	> 30	>999ms	300	40	
1/ [6]	> 20		500	150	
10 [5]	> 30		130	50	Temps d'intervention minimum

Tableau 6 : Temps d'intervention pour RCD Généraux et Sélectifs dans le pays AUS/NZ

(*) Courant d'intervention $\frac{1}{2}\Delta In$, RCD ne doit pas intervenir

(**) Courant d'essai et incertitudes conformément à la norme AS/NZS 3017

Mesure du courant d'intervention des protections différentielles

- Le but l'essai est de contrôler le courant d'intervention réel des interrupteurs différentiels généraux (il ne s'applique pas aux différentiels sélectifs)
- En présence d'interrupteurs différentiels avec courant d'intervention qui peut être sélectionné, il est utile d'effectuer ce test pour vérifier <u>le courant d'intervention réel du</u> <u>différentiel</u>. Pour les interrupteurs avec courant différentiel fixe, cet essai peut être exécuté pour relever d'éventuelles fuites vers la terre d'utilisateurs connectés à l'installation
- Si un dispositif de mise à la terre n'est pas disponible, effectuer l'essai en reliant l'instrument avec une borne sur un conducteur en aval du dispositif différentiel et une borne sur l'autre conducteur en amont de ce dispositif
- ➢ Le courant d'intervention doit être compris entre ½ IdN et IdN.

12.5. CONTROLE DE LA PUISSANCE D'INTERRUPTION DE PROTECTION But de l'essai

Vérifier que la puissance d'interruption du dispositif de protection dépasse le courant de défaut maximal possible sur le système.

Parties de l'installation à contrôler

L'essai doit être effectué sur le point où le courant de court-circuit maximal peut être obtenu, normalement immédiatement en aval de la protection à contrôler.

L'essai doit être effectué entre phase et phase (Z_{LL}) dans les installations triphasées et entre phase et neutre (Z_{LN}) dans les installations monophasées.

Valeurs admissibles

L'instrument effectue la comparaison entre la valeur mesurée à la valeur calculée conformément aux rapports suivants dérivés de la norme EN60909-0 :

$$BC > I_{MAX3\Phi} = C_{MAX} \cdot \frac{\frac{U_{L-L}^{NOM}}{\sqrt{3}}}{\frac{Z_{L-L}}{2}}$$

Systèmes triphasés

 $BC > I_{MAXL-N} = C_{MAX} \cdot \frac{U_{L-N}^{NOM}}{Z_{...}}$

Systèmes monophasés

Z_{L-L} = impédance mesurée entre phase et phase

Z_{L-N}= impédance mesurée entre phase et neutre

Tension Mesurée	U _{NOM}	CMAX
230V-10% < Vmesurée < 230V+ 10%	230V	1.05
230V+10% < Vmesurée < 400V- 10%	Vmesurée	1.10
400V-10% < Vmesurée < 400V+ 10%	400V	1.05
12.6. PROTECTION CONTRE LES CONTACTS INDIRECTS EN SYSTEMES TN But de l'essai

La protection contre les contacts indirects dans les systèmes TN doit être assurée au moyen d'un dispositif de protection contre les surintensités (typiquement magnétothermique ou fusible) qui interrompt l'alimentation du circuit ou de l'équipement en cas de défaillance entre une partie active et une masse ou un conducteur de protection dans un délai <u>ne dépassant pas 5s</u>, suffisant pour les machines, ou selon les temps indiqués dans ce qui suit Tableau 7. Pour les autres pays, se référer à leurs règlements respectifs

Uo [V]	Temps d'interruption de la protection [s]
50 ÷ 120	0.8
120 ÷ 230	0.4
230 ÷ 400	0.2
>400	0.1

Tableau 7 : Temps d'interruption de la protection

Uo = Tension nominale AC à la masse du système

Cette prescription est satisfaite par la condition :

$$Zs * Ia \le Uo$$

où :

- Zs = Impédance de LOOP de défaut P-PE, y compris enroulement de phase de transformateur, conducteur de ligne, au point de défaut et conducteur de protection du point de défaut au centre en étoile du transformateur
- la = Courant qui provoque l'interruption automatique de la protection dans le délai indiqué dans le Tableau 7
- Uo = Tension AC nominale à la terre

ATTENTION

L'instrument doit être utilisé pour effectuer des mesures sur l'impédance de la LOOP de défaut d'une valeur au moins 10 fois supérieure à la résolution de l'instrument de façon à minimiser l'erreur commise.

Parties de l'installation à contrôler

L'essai doit être effectué obligatoirement dans les système TN <u>non protégés par des</u> <u>dispositifs différentiels</u>.

Valeurs admissibles

L'objectif de la mesure effectuée par l'instrument est de vérifier que le rapport, issu de la norme EN60909-0, soit vérifié en chaque point du système :

$$Ia \leq I_{MINP-PE} = C_{MIN} \cdot \frac{U_{P-PE}^{NOM}}{Z_{P-PE}}$$

Tension Mesurée	U _{NOM}	Смім
230V-10% < Vmesurée < 230V+ 10%	230V	0.95
230V+10% < Vmesurée < 400V- 10%	Vmesurée	1.00
400V-10% < Vmesurée < 400V+ 10%	400V	0.95

L'instrument, en fonction de la valeur de tension P-PE nominale programmée (voir § 5.1.3) et de la valeur mesurée de l'impédance de Loop de défaut, calcule la **valeur minimale** du courant de court-circuit supposé qui doit être interrompu par le dispositif de protection. Cette valeur, pour une bonne coordination, DOIT toujours être supérieure ou égale à la valeur **la** du courant d'intervention du type de protection considéré comme le pire des cas

La valeur de référence la (voir Fig. 41) dépend de :

- Type de protection (courbes B, C, D, K)
- Courant nominal de la protection In
- Temps d'extinction du défaut de la part de la protection

Typiquement Ia = 3÷5In (courbe B), Ia = 5÷10In (courbe C), Ia = 10÷20In (courbes D,K)

Fig. 41: Exemple de courbes d'intervention protections magnétothermiques (MCB)

L'instrument permet de sélectionner (*) les paramètres suivants :

- MCB courbe B → 3A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A
- MCB courbe C → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 50A, 63A, 80A,100A,125A,160A,200A
- MCB courbes D, K → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A
- ➤ Fusible gG → 2A, 4A, 6A, 8A, 10A, 12A, 13A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A, 800A, 1000A, 1250A
- Fusible aM → 2A, 4A, 6A, 10A, 12A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A, 160A, 200A, 250A, 315A, 400A, 500A, 630A
- Temps d'extinction du défaut par la protection qui peut être sélectionnée parmi les valeurs : 0,1 s, 0,2 s, 0,4 s, 1 s, 5 s
- (*) Valeurs sujettes à variations

12.7. TEST → RA DANS LES SYSTEMES TN

La protection contre les contacts indirects dans les systèmes TN doit être assurée par un dispositif de protection contre les surintensités (typiquement magnétothermique ou fusible) qui interrompt l'alimentation du circuit ou de l'équipement en cas de défaillance entre une partie active et une masse ou un conducteur de protection dans un délai <u>ne dépassant pas</u> <u>5s</u>, suffisant pour les machines.

Parties de l'installation à contrôler

L'essai doit être effectué sur le point où on peut avoir le courant minimal de court-circuit, normalement à la fin de la ligne contrôlée par la protection dans les conditions normales de fonctionnement. L'essai doit être effectué entre Phase-PE (Z_{L-PE}) et entre Phase-Neutre (Z_{L-N}) dans les installations ou monophasé.

Valeurs admissibles

Toutefois, la valeur d'impédance mesurée doit satisfaire aux relations suivantes :

$$Z_{L-N} \leq Z_{LIM}$$
 (2)

où :

Z_{L-PE} = Impédance mesurée entre Phase et PE

Z_{L-N} = Impédance mesurée entre Phase et Neutre Valeur limite d'impédance maximale selon le type de protection Z_{L-N} = (Magnétothermique ou Eusible) et selon le temps d'intervention de la

Z_{LIM} = (Magnétothermique ou Fusible) et selon le temps d'intervention de la protection (valeur dépendant du Pays de Référence)

L'instrument permet de sélectionner (*) les paramètres suivants :

- MCB courbe B → 3A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A
- MCB courbe C → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 50A, 63A, 80A,100A,125A,160A,200A
- MCB courbes D, K → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A
- ➤ Fusible gG → 2A, 4A, 6A, 8A, 10A, 12A, 13A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A, 800A, 1000A, 1250A
- ➤ Fusible aM → 2A, 4A, 6A, 10A, 12A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A
- Temps d'extinction du défaut par la protection qui peut être sélectionnée parmi les valeurs : 0,1 s, 0,2 s, 0,4 s, 1 s, 5 s
- (*) Valeurs sujettes à variations

12.8. PROTECTION CONTRE LES CONTACTS INDIRECTS EN SYSTEMES TT But de l'essai

Vérifier que le dispositif de protection est cohérent avec la valeur de la résistance de terre. Il n'est pas possible de supposer a priori une valeur limite de résistance de terre à laquelle il convient de se référer dans le contrôle du résultat de la mesure, mais il est nécessaire de vérifier de temps à autre que la coordination prévue par la législation soit respectée.

Parties de l'installation à contrôler

L'installation de mise à la terre dans des conditions de fonctionnement. Le contrôle doit être effectué sans débrancher les prises de terre.

Valeurs admissibles

Dans tous les cas, la valeur de la résistance de terre mesurée doit respecter la relation suivante :

 $R_A < 50/I_a$

- où : R_A = résistance mesurée de l'installation de masse, dont la valeur peut être déterminée par les mesures suivantes :
 - Résistance de terre avec méthode voltampérométrique à trois fils
 - Impédance de la LOOP de défaut (*)
 - Résistance de terre à deux fils (**)
 - Résistance de terre à deux fils dans la prise (**)
 - Résistance de terre donnée par la mesure de la tension de contact Ut (**)
 - Résistance de terre donnée par la mesure de test du temps de déclenchement des interrupteurs différentiels RCD (A, AC, B), RCD S (A, AC) (**)
 - Ia = courant d'intervention de l'interrupteur différentiel automatique ou courant nominal d'intervention du différentiel (dans le cas du RCD S 2 ldN) exprimé en A
 - 50 = tension limite de sécurité (réduite à 25V dans des environnements particuliers)
- (*) Si un interrupteur différentiel est situé pour protéger le système, la mesure doit être effectuée en amont du différentiel ou en aval en le court-circuitant pour l'empêcher d'intervenir
- (**) Bien qu'elles ne soient pas actuellement prévues dans la norme CEI 64.8, ces méthodes fournissent des valeurs qui se sont révélées indicatives de la résistance de terre par d'innombrables essais de comparaison avec la méthode à trois fils.

EXEMPLE DE CONTRÔLE DE RÉSISTANCE DE TERRE

Installation protégée par un différentiel de 30mA

- > Mesure de la résistance de terre à l'aide d'une des méthodes mentionnées ci-dessus
- Pour comprendre si la résistance de l'installation est réglementaire, multiplier la valeur trouvée par 0,03A (30mA)
- Si le résultat est inférieur à 50V (ou 25V pour des environnements particuliers), l'installation peut être jugée coordonnée car elle respecte la formule indiquée ci-dessus

Quand on se trouve en présence d'interrupteurs différentiels de 30mA (presque la totalité des installations civiles), la résistance de terre maximale admissible est **50/0.03=1666** Ω ; cela permet d'utiliser aussi les méthodes simplifiées indiquées qui, bien que ne fournissant pas une valeur extrêmement précise, fournissent une valeur suffisamment approximative pour le calcul de coordination.

12.9. PROTECTION CONTRE LES CONTACTS INDIRECTS EN SYSTEMES IT

Dans les systèmes IT, les parties actives doivent être isolées de la terre ou mises à la terre par une impédance suffisamment élevée. Dans le cas d'un seul défaut de masse, le premier courant de défaut est donc faible et il n'est pas nécessaire d'interrompre le circuit. Cette connexion peut être faite au point neutre du système ou à un point neutre artificiel. S'il n'y a pas de point neutre, un <u>conducteur de ligne peut être mis à la terre à travers une impédance</u>. Toutefois, des précautions doivent être prises pour éviter le risque d'effets physiologiques néfastes sur les personnes en contact avec des pièces conductrices accessibles simultanément en cas de double défaut à la terre.

But de l'essai

Vérifier que l'impédance du disperseur auquel les masses sont connectées satisfait à la relation :

$$Z_E * I_d \leq U_L$$

où :

- Z_E = Impédance L-PE du disperseur auquel les masses sont connectées
- Id = Courant de premier défaut L-PE (typiquement exprimé en mA)

U_L = Tension de contact limite 25V ou 50V

Parties de l'installation à contrôler

L'installation de mise à la terre dans des conditions de fonctionnement. Le contrôle doit être effectué sans débrancher les prises de terre.

12.10. CONTROLE DE LA COORDINATION DES PROTECTIONS L-L, L-N ET L-PE But de l'essai

Effectuer la vérification de la coordination des protections (typiquement magnétothermique ou fusible) présentes dans une installation monophasée ou triphasée en fonction de la limite de temps d'intervention fixée et de la valeur calculée du courant de court-circuit.

Parties de l'installation à contrôler

L'essai doit être effectué sur le point où on peut avoir le courant minimal de court-circuit, normalement à la fin de la ligne contrôlée par la protection dans les conditions normales de fonctionnement. L'essai doit être effectué entre Phase-Phase dans les installations triphasées et entre Phase-Neutre ou Phase-PE dans les installations monophasées

Valeurs admissibles

L'instrument compare la valeur calculée du courant de court-circuit supposé avec le courant la qui provoque l'interruption automatique de la protection dans le temps spécifié selon les relations suivantes :

$I_{SCL-L_Min2\Phi} > I_a$	Système Triphasé → Impédance Loop F-F
$I_{SCL-N_Min} > I_a$	Système Monophasé → Impédance Loop F- N monophasé
$I_{SCL-PE_Min} > I_a$	Système Monophasé → Impédance Loop F- PE

Où :

lsc L-L_Min2 Φ	=	Courant de court-circuit supposé biphasé minimal Phase-Phase
Isc L-N_Min	=	Courant de court-circuit supposé minimal Phase-Neutre
Isc L-PE_Min	=	Courant de court-circuit supposé minimal Phase-PE

Le calcul du courant de court-circuit supposé est effectué par l'instrument sur la base de la mesure de l'impédance de Loop de défaut conformément aux relations suivantes dérivées de la norme EN60909-0 :

$$I_{SCL-L_Min2\Phi} = C_{MIN} \cdot \frac{U_{L-L}^{NOM}}{Z_{L-L}} \qquad I_{SCL-N_Min} = C_{MIN} \cdot \frac{U_{L-N}^{NOM}}{Z_{L-N}} \qquad I_{SCL-PE_Min} = C_{MIN} \cdot \frac{U_{L-PE}^{NOM}}{Z_{L-PE}}$$

Phase – Phase

Phase - Neutre

Phase – PE

Tension Mesurée	U _{NOM}	C _{MIN}
230V-10% < Vmesurée < 230V+ 10%	230V	0.95
230V+10% < Vmesurée < 400V- 10%	Vmesurée	1.00
400V-10% < Vmesurée < 400V+ 10%	400V	0.95

où :

U L-L = Tension de phase - phase nominale

= Tension de phase - neutre nominal U L-N

= Tension de phase - PE nominal U L-PE

Z L-L = Impédance mesurée entre phase et phase

= Impédance mesurée entre phase et neutre Z L-N

= Impédance mesurée entre phase et PE Z L-PE

ATTENTION

L'instrument doit être utilisé pour effectuer des mesures sur l'impédance de la LOOP de défaut d'une valeur au moins 10 fois supérieure à la résolution de l'instrument de façon à minimiser l'erreur commise.

L'instrument, en fonction de la valeur de tension nominale programmée (voir § 5.1.3) et de la valeur mesurée de l'impédance de Loop de défaut, calcule la **valeur minimale** du courant de court-circuit supposé qui doit être interrompu par le dispositif de protection. Cette valeur, pour une bonne coordination, DOIT toujours être supérieure ou égale à la valeur **la** du courant d'intervention du type de protection considéré.

La valeur de référence la dépend de :

- > Type de protection (courbe)
- Courant nominal de la protection
- Temps d'extinction du défaut de la part de la protection

L'instrument permet de sélectionner (*) les paramètres suivants :

- MCB courbe B → 3A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A
- MCB courbe C → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 50A, 63A, 80A,100A,125A,160A,200A
- MCB courbes D, K → 0.5A, 1A, 1.6A, 2A, 3A, 4A, 6A, 10A, 13A, 15A, 16A, 20A, 25A, 32A, 40A, 45A, 50A, 63A, 80A,100A,125A,160A,200A
- ➤ Fusible gG → 2A, 4A, 6A, 8A, 10A, 12A, 13A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A, 800A, 1000A, 1250A
- ➤ Fusible aM → 2A, 4A, 6A, 10A, 12A, 16A, 20A, 25A, 32A, 35A, 40A, 50A, 63A, 80A, 100A, 125A,160A, 200A, 250A, 315A, 400A, 500A, 630A
- Temps d'extinction du défaut par la protection qui peut être sélectionnée parmi les valeurs : 0,1s, 0,2s, 0,4s, 1s, 5s
- (*) Valeurs sujettes à variations

12.11. CONTROLE DE LA CHUTE DE TENSION SUR LES LIGNES DE DISTRIBUTION

La mesure de la chute de tension comme conséquence du flux de courant à travers un système ou une partie de celui-ci peut être très importante si elle est nécessaire :

- > Vérifier la capacité à fournir une charge de la part du système existant
- Dimensionner un nouveau système
- Rechercher les causes possibles de dysfonctionnements sur les équipements, les utilisateurs, etc. connectés à une ligne électrique

<u>But de l'essai</u>

Mesurer la valeur maximale de la chute de tension en pourcentage entre deux points d'une ligne de distribution

Parties de l'installation à contrôler

L'essai doit être effectué en réalisant deux mesures séquentielles de l'impédance de la ligne sur le point initial (typiquement en aval d'un dispositif de protection) et final de la ligne.

Valeurs admissibles

L'instrument effectue la comparaison entre la valeur calculée de la chute de tension maximale $\Delta V\%$ et la limite fixée (typiquement 4%) selon le rapport suivant :

$$\Delta V\%_{MAX} = \frac{(Z_2 - Z_1) * I_{NOM}}{V_{NOM}} * 100$$

où :

	Z2 =	=	Impédance	finale	de la	ligne	examinée
--	------	---	-----------	--------	-------	-------	----------

- Z_1 = Impédance initiale (Offset) de la ligne examinée ($Z_2 > Z_1$)
- INOM = Courant nominal du dispositif de protection sur la ligne examinée
- VNOM = Tension nominale Phase-Neutre ou Phase-Terre de la ligne examinée

HT INSTRUMENTS SA

C/ Legalitat, 89 08024 Barcelone - **ESP** Tél. : +34 93 408 17 77, Fax : +34 93 408 36 30 E-mail : info@htinstruments.com E-mail : info@htinstruments.es Site Internet : www.htinstruments.es **HT INSTRUMENTS USA LLC** 3145 Bordentown Avenue W3 08859 Parlin - NJ - **USA** Tél : +1 719 421 9323 E-mail : sales@ht-instruments.us Site Internet : www.ht-instruments.com

HT ITALY SRL

Via della Boaria, 40 48018 Faenza (RA) - **ITA** Tél : +39 0546 621002 Fax : +39 0546 621144 E-mail : ht@htitalia.it Site Internet : www.ht-instruments.com

HT INSTRUMENTS GMBH

Am Waldfriedhof 1b D-41352 Korschenbroich - **GER** Tél : +49 (0) 2161 564 581 Fax : + 49 (0) 2161 564 583 E-mail : info@ht-instruments.de Site Internet : www.ht-instruments.de

HT INSTRUMENTS BRASIL

Rua Aguaçu, 171, bl. lpê, salle 108 13098321 Campinas SP - **BRA** Tél : +55 19 3367,8775 Fax : +55 19 9979,11325 E-mail : vendas@ht-instruments.com.br Site Internet : www.ht-instruments.com.br

HT ITALIA CHINA OFFICE 意大利 HT 中国办事处

Room 3208, 490# Tianhe road, Guangzhou - **CHN** 地址: 广州市天河路 490 号壬丰大厦 3208 室 Tél.: +86 400-882-1983, Fax : +86 (0) 20-38023992 E-mail : zenglx_73@hotmail.com Site Internet : www.guangzhouht.com